A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 ...A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout. In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with of source ^239pu and neutron source ^241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from of source ^239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.展开更多
The investigation of a novel thermal neutron detector is developed to fulfill the requirements of the high intensity power diffractometer (HIPD) at the Chinese Spallation Neutron Source (CSNS). It consists of two ...The investigation of a novel thermal neutron detector is developed to fulfill the requirements of the high intensity power diffractometer (HIPD) at the Chinese Spallation Neutron Source (CSNS). It consists of two layers of 6LiF/ZnS(Ag) scintillators, two layers of crossed WLSF arrays, several multi-anode photo multiplier tubes (MA-PMT), and the matching readout electronics. The neutron detection efficiency of the scintilltors, the light transportation ability of the WLSF, and the spatial linearity of the readout electronics are measured and discussed in this paper. It shows that the sandwich structure and the compact readout electronics could fulfill the needs of the HIPD. A prototype with a 10 cm×10 cm sensitive area has been constructed to further study the characteristics of the neutron scintillator detector.展开更多
In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detec...In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter(sub-mm)spatial resolution.The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region.The short track projection of ions is obtained on the signal readout board,and the detector would get good spatial resolution.The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4 Garfield Interface.The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01%when the Al stopping layer is 3.0μm thick,the drift region is 2 mm thick,the strip pitch is 600μm,and the digital readout is employed.Thus,the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range.It could be used for the direct measurement of a high-flux neutron beam,such as Bragg transmission imaging,very small-angle scattering neutron detection and neutron beam diagnostic.展开更多
The principle of the method for the BESIII TOF calibration using cosmic ray data without magnetic field are reported in this paper. After applying calibration constants, the single-end readout time resolution could re...The principle of the method for the BESIII TOF calibration using cosmic ray data without magnetic field are reported in this paper. After applying calibration constants, the single-end readout time resolution could reach about 150 ps, and the time resolution for one layer is achieved to be about 110 ps. The paper also described the extraction scheme for the event start time of cosmic events.展开更多
A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. HereTOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of ...A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. HereTOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics.展开更多
文摘A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on one surface of the aluminum cathode plate as the neutron convertor. 96 channel pads with an area of 8 mm×8 mm each are used for fast signal readout. In order to study the basic characteristics of a boron-coated GEM, several irradiation tests were carried out with of source ^239pu and neutron source ^241Am(Be). The signal induced by the neutron source has a high signal-to-noise ratio. A clear image obtained from of source ^239pu is presented, which shows that the neutron beam monitor based on a boron-coated GEM has a good two-dimensional imaging ability.
基金Supported by National Natural Science Foundation of China(11175257)Key Laboratory of Neutron Detection and Electronics of Dongguan Municipality
文摘The investigation of a novel thermal neutron detector is developed to fulfill the requirements of the high intensity power diffractometer (HIPD) at the Chinese Spallation Neutron Source (CSNS). It consists of two layers of 6LiF/ZnS(Ag) scintillators, two layers of crossed WLSF arrays, several multi-anode photo multiplier tubes (MA-PMT), and the matching readout electronics. The neutron detection efficiency of the scintilltors, the light transportation ability of the WLSF, and the spatial linearity of the readout electronics are measured and discussed in this paper. It shows that the sandwich structure and the compact readout electronics could fulfill the needs of the HIPD. A prototype with a 10 cm×10 cm sensitive area has been constructed to further study the characteristics of the neutron scintillator detector.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0403702)the National Natural Science Foundation of China(Grant Nos.11574123,11775243,12175254,and U2032166)+1 种基金Youth Innovation Promotion Association CAS and Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110217)the Xie Jialin Foundation,China(Grant No.E1546FU2)。
文摘In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter(sub-mm)spatial resolution.The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region.The short track projection of ions is obtained on the signal readout board,and the detector would get good spatial resolution.The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4 Garfield Interface.The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01%when the Al stopping layer is 3.0μm thick,the drift region is 2 mm thick,the strip pitch is 600μm,and the digital readout is employed.Thus,the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range.It could be used for the direct measurement of a high-flux neutron beam,such as Bragg transmission imaging,very small-angle scattering neutron detection and neutron beam diagnostic.
基金Supported by National Natural Science Foundation of China (10565001, 10647002, 10875138)
文摘The principle of the method for the BESIII TOF calibration using cosmic ray data without magnetic field are reported in this paper. After applying calibration constants, the single-end readout time resolution could reach about 150 ps, and the time resolution for one layer is achieved to be about 110 ps. The paper also described the extraction scheme for the event start time of cosmic events.
基金Supported by BEPCⅡ Project,CAS Knowledge Innovation Program U602 and U-34(IHEP)
文摘A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. HereTOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics.