期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
mRMR和PSO算法对神经网络预测模型优化效果
1
作者
杜
润
琪
于丹
+1 位作者
刘益民
岑悦
《煤气与热力》
2024年第1期6-9,34,共5页
提出利用最大相关和最小冗余(mRMR)算法、粒子群优化(PSO)算法,对BP神经网络预测模型进行优化。对某住宅楼进行供热负荷预测,评价3种神经网络预测模型(BP神经网络预测模型、mRMR-BP神经网络预测模型、PSO-mRMR-BP神经网络预测模型)的预...
提出利用最大相关和最小冗余(mRMR)算法、粒子群优化(PSO)算法,对BP神经网络预测模型进行优化。对某住宅楼进行供热负荷预测,评价3种神经网络预测模型(BP神经网络预测模型、mRMR-BP神经网络预测模型、PSO-mRMR-BP神经网络预测模型)的预测效果。在3种神经网络预测模型中,BP神经网络预测模型的预测效果最差,PSO-mRMR-BP神经网络预测模型的预测效果最佳。与BP神经网络预测模型相比,经过mRMR算法对输入变量进行筛选以及PSO算法对初始参数进行优化,PSO-mRMR-BP神经网络预测模型的预测效果显著提高。
展开更多
关键词
供热负荷
预测
BP神经网络
mRMR算法
PSO算法
下载PDF
职称材料
题名
mRMR和PSO算法对神经网络预测模型优化效果
1
作者
杜
润
琪
于丹
刘益民
岑悦
机构
北京建筑大学
中国建筑科学研究院有限公司
出处
《煤气与热力》
2024年第1期6-9,34,共5页
文摘
提出利用最大相关和最小冗余(mRMR)算法、粒子群优化(PSO)算法,对BP神经网络预测模型进行优化。对某住宅楼进行供热负荷预测,评价3种神经网络预测模型(BP神经网络预测模型、mRMR-BP神经网络预测模型、PSO-mRMR-BP神经网络预测模型)的预测效果。在3种神经网络预测模型中,BP神经网络预测模型的预测效果最差,PSO-mRMR-BP神经网络预测模型的预测效果最佳。与BP神经网络预测模型相比,经过mRMR算法对输入变量进行筛选以及PSO算法对初始参数进行优化,PSO-mRMR-BP神经网络预测模型的预测效果显著提高。
关键词
供热负荷
预测
BP神经网络
mRMR算法
PSO算法
Keywords
heating load
prediction
BP neural network
mRMR algorithm
PSO algorithm
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
mRMR和PSO算法对神经网络预测模型优化效果
杜
润
琪
于丹
刘益民
岑悦
《煤气与热力》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部