The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit r...The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 417 Gbit/s per wavelength signals delivery in a fiber-wireless converged communication system supported by advanced digital-signalprocessing(DSP)algorithms and a polarization multiplexing-based multiple-input multiple-output(MIMO)scheme.In the experiment,up to 60 GBaud(480 Gbit/s)polarization-division-multiplexing 16-ary quadrature-amplitude-modulation(PDM16QAM)signals are transmitted over 20 km fibers and 3 m wireless 2×2 MIMO links at 318 GHz with the bit error rate(BER)under 1.56×10^(−2).It is the first demonstration to our knowledge of signals delivery exceeding 400 Gbit/s per wavelength in a photonics-assisted fiber-wireless converged 2×2 MIMO communication system.展开更多
We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal ove...We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal over 4600 m wireless distance at 88.5 GHz.Advanced offline digital signal processing algorithms are proposed and employed for signal recovery,which makes the bit-error ratio under 2.4×10^(−2).To the best of our knowledge,this is the first field-trial demonstration of>4 km W-band 16QAM signal transmission,and the result achieves a record-breaking product of wireless transmission capacity and distance,i.e.,184(Gbit/s)·km,for high-speed and long-distance W-band wireless communication.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.61935005,61835002,and62127802)。
文摘The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 417 Gbit/s per wavelength signals delivery in a fiber-wireless converged communication system supported by advanced digital-signalprocessing(DSP)algorithms and a polarization multiplexing-based multiple-input multiple-output(MIMO)scheme.In the experiment,up to 60 GBaud(480 Gbit/s)polarization-division-multiplexing 16-ary quadrature-amplitude-modulation(PDM16QAM)signals are transmitted over 20 km fibers and 3 m wireless 2×2 MIMO links at 318 GHz with the bit error rate(BER)under 1.56×10^(−2).It is the first demonstration to our knowledge of signals delivery exceeding 400 Gbit/s per wavelength in a photonics-assisted fiber-wireless converged 2×2 MIMO communication system.
基金partially supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,91938202,61720106015,61835002,62127802,and 61805043).
文摘We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal over 4600 m wireless distance at 88.5 GHz.Advanced offline digital signal processing algorithms are proposed and employed for signal recovery,which makes the bit-error ratio under 2.4×10^(−2).To the best of our knowledge,this is the first field-trial demonstration of>4 km W-band 16QAM signal transmission,and the result achieves a record-breaking product of wireless transmission capacity and distance,i.e.,184(Gbit/s)·km,for high-speed and long-distance W-band wireless communication.