In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ens...In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.展开更多
Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members signi...Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members significantly deviate from the true atmospheric state.Therefore,event samples with small probabilities may downgrade the accuracy of an ensemble forecast.In this study,the evolution of tropical storms(weak typhoon)was investigated and an observed tropical storm track was used to limit the probability distribution of samples.The ensemble forecast method used pure observation data instead of assimilated data.In addition,the prediction results for three tropical storm systems,Merbok,Mawar,and Guchol,showed that track and intensity errors could be reduced through sample optimization.In the research,the vertical structures of these tropical storms were compared,and the existence of different thermal structures was discovered.One possible reason for structural differences is sample optimization,and it may affect storm intensity and track.展开更多
Extreme rainfall is common from May to October in south China.This study investigates the key deviation of initial fields on ensemble forecast of a persistent heavy rainfall event from May 20 to 22,2020 in Guangdong P...Extreme rainfall is common from May to October in south China.This study investigates the key deviation of initial fields on ensemble forecast of a persistent heavy rainfall event from May 20 to 22,2020 in Guangdong Province,south China by comparing ensemble members with different performances.Based on the rainfall distribution and pattern,two types are selected for analysis compared with the observed precipitation.Through the comparison of the thermal and dynamic fields in the middle and lower layers,it can be found that the thermal difference between the middle and lower layers was an important factor which led to the deviation of precipitation distribution.The dynamic factors also have some effects on the precipitation area although they were not as important as the thermal factors in this case.Correlating accumulated precipitation with atmospheric state variables further corroborates the above conclusion.This study suggests that the uncertainty of the thermal and dynamic factors in the numerical model can have a strong impact on the quantitative skills of heavy rainfall forecasts.展开更多
基金National Key Project for Basic Research(973 project)(2015CB452802)National Natural Science Fund(41475102,41675099,41475061)+2 种基金Science and Technology Planning Project of Guangdong Province(2017B020218003,2017B030314140)Natural Science Foundation of Guangdong Province(2016A030313140,2017A030313225)Science and technology project of Guangdong Meteorological Bureau(GRMC2017Q01)
文摘In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.
基金Science and Technology Planning Project of Guangdong Province(2017B020244002,2018B020208004,2017B030314140)Natural Science Foundation of Guangdong Province(2019A1515011118)+1 种基金National Natural Science Fund(41705089)Science and Technology Project of Guangdong Meteorological Service(GRMC2017Q01)
文摘Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members significantly deviate from the true atmospheric state.Therefore,event samples with small probabilities may downgrade the accuracy of an ensemble forecast.In this study,the evolution of tropical storms(weak typhoon)was investigated and an observed tropical storm track was used to limit the probability distribution of samples.The ensemble forecast method used pure observation data instead of assimilated data.In addition,the prediction results for three tropical storm systems,Merbok,Mawar,and Guchol,showed that track and intensity errors could be reduced through sample optimization.In the research,the vertical structures of these tropical storms were compared,and the existence of different thermal structures was discovered.One possible reason for structural differences is sample optimization,and it may affect storm intensity and track.
基金National Key R&D Program of China(2018YFC1507602)National Natural Science Foundation of China(41975136)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515011118)Science and Technology Planning Project of Guangdong Province(2017B020244002,2018B020208004)。
文摘Extreme rainfall is common from May to October in south China.This study investigates the key deviation of initial fields on ensemble forecast of a persistent heavy rainfall event from May 20 to 22,2020 in Guangdong Province,south China by comparing ensemble members with different performances.Based on the rainfall distribution and pattern,two types are selected for analysis compared with the observed precipitation.Through the comparison of the thermal and dynamic fields in the middle and lower layers,it can be found that the thermal difference between the middle and lower layers was an important factor which led to the deviation of precipitation distribution.The dynamic factors also have some effects on the precipitation area although they were not as important as the thermal factors in this case.Correlating accumulated precipitation with atmospheric state variables further corroborates the above conclusion.This study suggests that the uncertainty of the thermal and dynamic factors in the numerical model can have a strong impact on the quantitative skills of heavy rainfall forecasts.