The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed dur...The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.展开更多
Based on XRD,SEM and EDS analyses,the phases in GH4151 alloy were identified.Differential scanning calorimetry(DSC)experiment and metallographic method were carried out to determine the incipient melting temperature(I...Based on XRD,SEM and EDS analyses,the phases in GH4151 alloy were identified.Differential scanning calorimetry(DSC)experiment and metallographic method were carried out to determine the incipient melting temperature(IMT)of the alloy.The result shows that the IMT of alloy is situated between 1150 and 1160℃.Subsequently,the dissolution process of Laves phase was carried out,and the dissolution kinetic equations were obtained at different temperatures.And then based on the verification of experiments,the model was confirmed to be credible to predict the fraction of the Laves phase dissolution.Finally,the results of diffusion coefficients indicate that the diffusion of Nb element is a critical factor for homogenization process of GH4151 alloy.展开更多
The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship...The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.展开更多
基金Project(50974016)supported by the National Natural Science Foundation of China。
文摘The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.
基金Project(50974016)supported by the National Natural Science Foundation of China。
文摘Based on XRD,SEM and EDS analyses,the phases in GH4151 alloy were identified.Differential scanning calorimetry(DSC)experiment and metallographic method were carried out to determine the incipient melting temperature(IMT)of the alloy.The result shows that the IMT of alloy is situated between 1150 and 1160℃.Subsequently,the dissolution process of Laves phase was carried out,and the dissolution kinetic equations were obtained at different temperatures.And then based on the verification of experiments,the model was confirmed to be credible to predict the fraction of the Laves phase dissolution.Finally,the results of diffusion coefficients indicate that the diffusion of Nb element is a critical factor for homogenization process of GH4151 alloy.
文摘The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.