Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,s...Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.展开更多
This work unraveled the synergistic effects of crystal structure and oxygen vacancy on the photocatalytic activity of Bi2O3 polymorphs at an atomic level for the first time. The artificial oxygen vacancy is introduced...This work unraveled the synergistic effects of crystal structure and oxygen vacancy on the photocatalytic activity of Bi2O3 polymorphs at an atomic level for the first time. The artificial oxygen vacancy is introduced into α-Bi2O3 and β-Bi2O3 via a facile method to engineer the band structures and transportation of carriers and redox reaction for highly enhanced photocatalysis. After the optimization, the photocatalytic NO removal ratio on defective β-Bi2O3 was increased from 25.2% to 52.0% under visible light irradiation.On defective a-Bi2O3, the NO removal ratio is just increased from 7.3% to 20.1%. The difference in the activity enhancement is associated with the different structure of crystal phase and oxygen vacancy.The density functional theory(DFT) calculation and experimental results confirm that the oxygen vacancy in a-Bi2O3 and β-Bi2O3 could promote the activation of reactants and intermediate as active centers. The crystal structure and oxygen vacancy could synergistically regulate the electrons transfer pathway. On defective β-Bi2O3 with tunnel structure, the reactants activation and charge transfer were more efficient than that on α-Bi2O3 with zigzag-type configuration because the defect structures on the surface of a-Bi2O3 and β-Bi2O3 were different. Moreover, the in situ FT-IR revealed the mechanisms of photocatalytic NO oxidation. The photocatalytic NO conversion pathway on α-Bi2O3 and β-Bi2O3 can be tuned by the different surface defect structures. This work could provide a novel strategy to regulate the photocatalytic activity and conversion pathway via the synergistic effects of crystal structure and oxygen vacancy.展开更多
The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving ...The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving better solar light conversion and photocatalysis efficiency. For this purpose, we have designed a novel Bi quantum dots(QDs) implanted C-doped BiOCl photocatalyst(C/BOC/B) for NOx removal. The feasibility was firstly evaluated through density functional theory(DFT) calculations methods, which indicates that the enhanced photocatalytic performance could be expected owing to the synergistic effects of doped C heteroatoms and loaded Bi QDs. Then, the C/BOC/B was synthesized via a facile hydrothermal method and exhibited efficient and stable visible light photocatalytic NO removal. The results found that the doped C atoms can serve as electron guides to induce oriented charge transfer from Bi QDs to BiOCl, while the Bi QDs can act as light-capture and electron-donating sites. The reaction pathway and mechanism for NO conversion was unveiled by in situ Fourier-transform infrared spectroscopy combined with DFT calculation. The enhanced adsorption of reactants and intermediates could promote the overall reaction efficiency and selectivity in photocatalytic NO conversion. This work could provide a new perspective on the mechanistic understanding of the synergistic effects toward non-metal doping and SPR effects in semiconductor photocatalysts, and this presented technique could be extended for other semiconductor materials.展开更多
Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely inves...Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely investigated,the charge separation and transfer mechanism at the contacting interface of the two has not been fully revealed.Here,a novel SrTiO3/BiOI(STB)heterostructured photocatalyst was successfully fabricated by using a facile method.The heterostructure in the photocatalyst extends the photoabsorption to the visible light range,and thus,high photocatalytic NO removal performance can be achieved under visible light irradiation.A combination of experimental and theoretical evidences indicated that the photogenerated electrons from the BiOI semiconductor can directly transfer to the SrTiO3 surface through a preformed electron delivery channel.Enhanced electron transfer was expected between the SrTiO3 and BiOI surfaces under light irradiation,and leads to efficient ROS generation and thus a high NO conversion rate.Moreover,in situ diffused reflectance infrared Fourier transform spectroscopy revealed that STB can better inhibit the accumulation of the toxic intermediate NO2 and catalyze the NO oxidation more effectively.This work presents a new insight into the mechanism of the interfacial charge separation in heterostructures and provides a simple strategy to promote the photocatalytic technology for efficient and safe air purification.展开更多
Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transforma...Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.展开更多
The accumulation of intermediates or final products on TiO2 during photocatalytic volatile organic compounds(VOCs)degradation is typically neglected,despite the fact that it could result in the block of active sites a...The accumulation of intermediates or final products on TiO2 during photocatalytic volatile organic compounds(VOCs)degradation is typically neglected,despite the fact that it could result in the block of active sites and the deactivation of photocatalysts.Inspired from the natural formation of stalactite(CaCO3+H2O+CO2←→Ca(HCO3)2),we fabricated CaCO3 loading TiO2 composites(CCT21)to realize the spontaneously transfer of accumulated final products(CO2 and H2O).Efficient and durable performance for gaseous toluene removal has been demonstrated and the cost of photocatalyst is greatly reduced by the comparison of specific activity.The introduction of CaCO3 induces the interaction between TiO2 and CaCO3 to stimulate abundant activated electrons for the improvement on the adsorption and activation of reactants and the transformation of photogenerated carriers,and most importantly,facilitates the transfer of final products to release active sites and thus suppress the deactivation of TiO2.Furthermore,we develop a facile method to immobilize CCT21 powder on flexible support,which greatly reduces the loss of photocatalysts and correspondingly enables the practical application of TiO2-based products.Therefore,this work presents a novel nature-inspired strategy to address the challenge of deactivation,and advances the development of photocatalytic technology for environmental remediation.展开更多
基金supported by the National Natural Science Foundation of China(21501016,51501024,51871037 and 21822601)the Fundamental Research Funds for the Central Universities(2018CDQYCL0027)~~
文摘Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.
基金supported by the National Natural Science Foundation of China (21822601, 21777011, and 21501016)the Innovative Research Team of Chongqing (CXQT19023)+2 种基金the Natural Science Foundation of Chongqing (cstc2017jcyj BX0052)the Plan for “National Youth Talents” of the Organization Department of the Central Committee, the Innovative Project from Chongqing Technology and Business University (yjscxx2019-101-67)the Fundamental Research Funds for the Central Universities (ZYGX2019Z021)。
文摘This work unraveled the synergistic effects of crystal structure and oxygen vacancy on the photocatalytic activity of Bi2O3 polymorphs at an atomic level for the first time. The artificial oxygen vacancy is introduced into α-Bi2O3 and β-Bi2O3 via a facile method to engineer the band structures and transportation of carriers and redox reaction for highly enhanced photocatalysis. After the optimization, the photocatalytic NO removal ratio on defective β-Bi2O3 was increased from 25.2% to 52.0% under visible light irradiation.On defective a-Bi2O3, the NO removal ratio is just increased from 7.3% to 20.1%. The difference in the activity enhancement is associated with the different structure of crystal phase and oxygen vacancy.The density functional theory(DFT) calculation and experimental results confirm that the oxygen vacancy in a-Bi2O3 and β-Bi2O3 could promote the activation of reactants and intermediate as active centers. The crystal structure and oxygen vacancy could synergistically regulate the electrons transfer pathway. On defective β-Bi2O3 with tunnel structure, the reactants activation and charge transfer were more efficient than that on α-Bi2O3 with zigzag-type configuration because the defect structures on the surface of a-Bi2O3 and β-Bi2O3 were different. Moreover, the in situ FT-IR revealed the mechanisms of photocatalytic NO oxidation. The photocatalytic NO conversion pathway on α-Bi2O3 and β-Bi2O3 can be tuned by the different surface defect structures. This work could provide a novel strategy to regulate the photocatalytic activity and conversion pathway via the synergistic effects of crystal structure and oxygen vacancy.
文摘The simultaneous integration of heteroatom doping and surface plasmon resonance(SPR) modulation on semiconductor photocatalysts could be capable of improving visible light utilization and charge separation, achieving better solar light conversion and photocatalysis efficiency. For this purpose, we have designed a novel Bi quantum dots(QDs) implanted C-doped BiOCl photocatalyst(C/BOC/B) for NOx removal. The feasibility was firstly evaluated through density functional theory(DFT) calculations methods, which indicates that the enhanced photocatalytic performance could be expected owing to the synergistic effects of doped C heteroatoms and loaded Bi QDs. Then, the C/BOC/B was synthesized via a facile hydrothermal method and exhibited efficient and stable visible light photocatalytic NO removal. The results found that the doped C atoms can serve as electron guides to induce oriented charge transfer from Bi QDs to BiOCl, while the Bi QDs can act as light-capture and electron-donating sites. The reaction pathway and mechanism for NO conversion was unveiled by in situ Fourier-transform infrared spectroscopy combined with DFT calculation. The enhanced adsorption of reactants and intermediates could promote the overall reaction efficiency and selectivity in photocatalytic NO conversion. This work could provide a new perspective on the mechanistic understanding of the synergistic effects toward non-metal doping and SPR effects in semiconductor photocatalysts, and this presented technique could be extended for other semiconductor materials.
基金supported by the National Natural Science Foundation of China(21822601,21501016,21777011)the National R&D Program of China(2016YFC02047)+1 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2017jcyj BX0052)~~
文摘Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely investigated,the charge separation and transfer mechanism at the contacting interface of the two has not been fully revealed.Here,a novel SrTiO3/BiOI(STB)heterostructured photocatalyst was successfully fabricated by using a facile method.The heterostructure in the photocatalyst extends the photoabsorption to the visible light range,and thus,high photocatalytic NO removal performance can be achieved under visible light irradiation.A combination of experimental and theoretical evidences indicated that the photogenerated electrons from the BiOI semiconductor can directly transfer to the SrTiO3 surface through a preformed electron delivery channel.Enhanced electron transfer was expected between the SrTiO3 and BiOI surfaces under light irradiation,and leads to efficient ROS generation and thus a high NO conversion rate.Moreover,in situ diffused reflectance infrared Fourier transform spectroscopy revealed that STB can better inhibit the accumulation of the toxic intermediate NO2 and catalyze the NO oxidation more effectively.This work presents a new insight into the mechanism of the interfacial charge separation in heterostructures and provides a simple strategy to promote the photocatalytic technology for efficient and safe air purification.
基金the National Natural Science Foundation of China(51508356)Science and Technology Support Program of Sichuan Province(2014GZ0213,2016GZ0045)Youth Project in Science and Technology Innovation Program of Sichuan Province(17-YCG053)~~
文摘Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.
基金supported by the National Natural Science Foundation of China(21822601 and 21777011)the Fundamental Research Funds for the Central Universities(ZYGX2019Z021)+2 种基金the 111 Project(B20030)the Plan for“National Youth Talents”of the Organization Department of the Central CommitteeSouthwest Petroleum University Graduate Research Innovation Fund Project(2019cxzd008)。
文摘The accumulation of intermediates or final products on TiO2 during photocatalytic volatile organic compounds(VOCs)degradation is typically neglected,despite the fact that it could result in the block of active sites and the deactivation of photocatalysts.Inspired from the natural formation of stalactite(CaCO3+H2O+CO2←→Ca(HCO3)2),we fabricated CaCO3 loading TiO2 composites(CCT21)to realize the spontaneously transfer of accumulated final products(CO2 and H2O).Efficient and durable performance for gaseous toluene removal has been demonstrated and the cost of photocatalyst is greatly reduced by the comparison of specific activity.The introduction of CaCO3 induces the interaction between TiO2 and CaCO3 to stimulate abundant activated electrons for the improvement on the adsorption and activation of reactants and the transformation of photogenerated carriers,and most importantly,facilitates the transfer of final products to release active sites and thus suppress the deactivation of TiO2.Furthermore,we develop a facile method to immobilize CCT21 powder on flexible support,which greatly reduces the loss of photocatalysts and correspondingly enables the practical application of TiO2-based products.Therefore,this work presents a novel nature-inspired strategy to address the challenge of deactivation,and advances the development of photocatalytic technology for environmental remediation.