In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.
主要讨论了下列n阶带p-Laplacian算子多点边值问题在共振条件下解的存在性.(Φp(x(n-1)))′+f(t,x,x′,…,x(n-2))=0,0<t<1x(0)=x′(0)=…=x(n-2)(0)=0,Φp(x(n-1)(1))=∑ from i=1 to m-2 αiΦp(x(n-1)(ξi))主要工具是Mawhin...主要讨论了下列n阶带p-Laplacian算子多点边值问题在共振条件下解的存在性.(Φp(x(n-1)))′+f(t,x,x′,…,x(n-2))=0,0<t<1x(0)=x′(0)=…=x(n-2)(0)=0,Φp(x(n-1)(1))=∑ from i=1 to m-2 αiΦp(x(n-1)(ξi))主要工具是Mawhin重合度理论的一个推广定理.展开更多
得到具有多个正负系数的时滞抛物型微分方程一切解振动的若干新的充分条件,推广和改进了文献[1](Kreith K,Ladas G.Allowable delays for positive diffusion processes.Hiroshi-ma Math J,1985,15:437-443)中的结果.
基金The project is supported by National Natural Science Foundation of China(10371006)
文摘In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.
文摘主要讨论了下列n阶带p-Laplacian算子多点边值问题在共振条件下解的存在性.(Φp(x(n-1)))′+f(t,x,x′,…,x(n-2))=0,0<t<1x(0)=x′(0)=…=x(n-2)(0)=0,Φp(x(n-1)(1))=∑ from i=1 to m-2 αiΦp(x(n-1)(ξi))主要工具是Mawhin重合度理论的一个推广定理.
文摘得到具有多个正负系数的时滞抛物型微分方程一切解振动的若干新的充分条件,推广和改进了文献[1](Kreith K,Ladas G.Allowable delays for positive diffusion processes.Hiroshi-ma Math J,1985,15:437-443)中的结果.