采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,...采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,对神经网络进行贝叶斯正则化,从而提高模型的检测效率。贝叶斯算法通过限制神经网络权值,使网络反应更加光滑,模型更精确。通过利用ASHRAE Project提供的数据对FDD(fault detection and diagnosis)策略进行验证,检测率明显提高。展开更多
文摘采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,对神经网络进行贝叶斯正则化,从而提高模型的检测效率。贝叶斯算法通过限制神经网络权值,使网络反应更加光滑,模型更精确。通过利用ASHRAE Project提供的数据对FDD(fault detection and diagnosis)策略进行验证,检测率明显提高。