针对在弱信号环境下传统算法无法进行捕获的问题,提出了一种改进算法。该算法在双块零拓展(double block zero padding,DBZP)算法的基础上,采用延迟累加的方法,首先将DBZP算法相关运算结果中被舍弃的部分暂存,然后对延迟1ms的接收信号...针对在弱信号环境下传统算法无法进行捕获的问题,提出了一种改进算法。该算法在双块零拓展(double block zero padding,DBZP)算法的基础上,采用延迟累加的方法,首先将DBZP算法相关运算结果中被舍弃的部分暂存,然后对延迟1ms的接收信号进行相关运算,得到相应的相关运算结果,将其与存储的运算结果进行相干累加,并将相干累加结果作为捕获模块输出与门限值进行比较。改进算法在增加极少运算量的前提下,通过提高相关运算结果的利用率,增加了数据观测量。仿真结果表明,改进算法能够提高捕获算法处理增益,在捕获载噪比为17dB-Hz的信号时,检测概率能够达到91%。展开更多
文摘针对在弱信号环境下传统算法无法进行捕获的问题,提出了一种改进算法。该算法在双块零拓展(double block zero padding,DBZP)算法的基础上,采用延迟累加的方法,首先将DBZP算法相关运算结果中被舍弃的部分暂存,然后对延迟1ms的接收信号进行相关运算,得到相应的相关运算结果,将其与存储的运算结果进行相干累加,并将相干累加结果作为捕获模块输出与门限值进行比较。改进算法在增加极少运算量的前提下,通过提高相关运算结果的利用率,增加了数据观测量。仿真结果表明,改进算法能够提高捕获算法处理增益,在捕获载噪比为17dB-Hz的信号时,检测概率能够达到91%。