期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于贝叶斯优化的LSTM高速交通流量预测
被引量:
3
1
作者
沈括
朱怡帆
+1 位作者
孟祥毅
李海济
《现代计算机》
2022年第11期51-55,共5页
利用大数据技术来研究海量的交通数据,是当前研究热点之一。而长短期记忆网络(LSTM)对大数据训练具有很强的适应性和出色的扩展性,相较于RNN无法处理长期依赖的问题具有很大的优势。基于LSTM神经网络,针对人为经验调参困难的问题,提出...
利用大数据技术来研究海量的交通数据,是当前研究热点之一。而长短期记忆网络(LSTM)对大数据训练具有很强的适应性和出色的扩展性,相较于RNN无法处理长期依赖的问题具有很大的优势。基于LSTM神经网络,针对人为经验调参困难的问题,提出了一种基于贝叶斯优化的LSTM模型。最后利用英国高速公路数据集进行验证,测试模型对交通流量预测的有效性与准确性。实验结果表明,基于贝叶斯优化的LSTM模型表现出了良好的性能,预测精度较高。
展开更多
关键词
大数据
LSTM
贝叶斯算法
交通流量预测
下载PDF
职称材料
题名
基于贝叶斯优化的LSTM高速交通流量预测
被引量:
3
1
作者
沈括
朱怡帆
孟祥毅
李海济
机构
安徽大学互联网学院
出处
《现代计算机》
2022年第11期51-55,共5页
基金
2021年大学生创新创业训练计划(S202110357502)。
文摘
利用大数据技术来研究海量的交通数据,是当前研究热点之一。而长短期记忆网络(LSTM)对大数据训练具有很强的适应性和出色的扩展性,相较于RNN无法处理长期依赖的问题具有很大的优势。基于LSTM神经网络,针对人为经验调参困难的问题,提出了一种基于贝叶斯优化的LSTM模型。最后利用英国高速公路数据集进行验证,测试模型对交通流量预测的有效性与准确性。实验结果表明,基于贝叶斯优化的LSTM模型表现出了良好的性能,预测精度较高。
关键词
大数据
LSTM
贝叶斯算法
交通流量预测
Keywords
big data
LSTM
bayesian algorithm
traffic flow forecast
分类号
U491.1 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于贝叶斯优化的LSTM高速交通流量预测
沈括
朱怡帆
孟祥毅
李海济
《现代计算机》
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部