期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
煤矿运输系统多元异常图像检测研究
1
作者 吕东翰 胡而已 +1 位作者 黄一珀 李汶 《工矿自动化》 CSCD 北大核心 2024年第6期70-78,共9页
煤矿运输系统的异常险情种类繁多、场景多样,煤矿现场异常事故的发生具有偶然性,异常样本的获取其数量远小于正常样本,造成正负样本不平衡。针对上述问题,提出一种基于超球重构数据描述(HRDD)的煤矿运输系统多元异常图像检测方法。在全... 煤矿运输系统的异常险情种类繁多、场景多样,煤矿现场异常事故的发生具有偶然性,异常样本的获取其数量远小于正常样本,造成正负样本不平衡。针对上述问题,提出一种基于超球重构数据描述(HRDD)的煤矿运输系统多元异常图像检测方法。在全卷积数据描述(FCDD)基础上引入图像重构辅助任务,选用均方差损失函数作为图像重构辅助任务的目标函数,将异常图像检测和定位量化为一个不等式约束优化问题。采用无缝融合技术将辅助数据集、异常样本融合到正常样本中,以缩小异常融合样本与正常样本的差异,扩大异常样本总量,平衡异常样本、正常样本的比例。通过多组噪声模拟实验和现场实验证明,以一定概率在抵抗区添加高斯噪声进行增强训练,可提高HRDD模型的抗噪效能、泛化能力、检测准确率等。消融实验结果表明:辅助数据集有效地改善了样本不平衡问题,准确率提高了36.5%;引入图像重构辅助任务可保证深层特征能够准确映射到异常位置,交并比(IoU)提升了33.4%;辅助数据集与图像重构辅助任务之间存在强耦合作用,二者组合使用能进一步激发HRDD算法的性能潜力;添加无缝融合样本、高斯噪声增强等在一定程度上提高了HRDD模型的泛化能力。对照实验结果表明,HRDD算法准确率及IoU均优于其他主流算法,相比FCDD算法,HRDD算法准确率、IoU分别提高了4.6%,7.0%,更适用于煤矿现场。 展开更多
关键词 煤矿运输系统 异常图像检测 全卷积数据描述 超球重构数据描述 HRDD 图像重构 无缝融合技术 高斯噪声增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部