Polarization plays an important role in the Raman spectroscopy. We study, in graphene, anisotropic polarization due to electron-phonon coupling (EPC). The numerical results show that the anisotropy is obvious even w...Polarization plays an important role in the Raman spectroscopy. We study, in graphene, anisotropic polarization due to electron-phonon coupling (EPC). The numerical results show that the anisotropy is obvious even when the wave vector is in the range of the Raman experiment. The analytical expression is deduced from the structure factor, which indicates the crucial origin of the anisotropy. We also find that, as the phonon energy increases the polarization is clearly weakened due to the screen effect of EPC, but the anisotropy totally remains.展开更多
基金Project supported by the State Key Development Program for Basic Research of China (No.2007CB310402)the National Natural Science Foundation of China (No.60721004)+1 种基金the Shanghai Municipal Commission of Science and Technology (Nos.06dj14008,06CA07001)the Major Poject and Hundred Scholar Plan of the Chinese Academy of Sciences
文摘Polarization plays an important role in the Raman spectroscopy. We study, in graphene, anisotropic polarization due to electron-phonon coupling (EPC). The numerical results show that the anisotropy is obvious even when the wave vector is in the range of the Raman experiment. The analytical expression is deduced from the structure factor, which indicates the crucial origin of the anisotropy. We also find that, as the phonon energy increases the polarization is clearly weakened due to the screen effect of EPC, but the anisotropy totally remains.