期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征对比学习和图卷积的社交网络用户分类 被引量:1
1
作者 政学 +1 位作者 彭德中 陈杰 《计算机工程》 CAS CSCD 北大核心 2024年第4期258-266,共9页
社交网络用户分类旨在通过用户属性和社交关系确定用户的兴趣爱好,可通过图类数据的节点分类实现。多数基于图卷积神经网络(GCN)的节点分类方法仅能处理高同质率数据集,但社交网络数据集通常具有较高的异质率。针对社交网络数据集同质... 社交网络用户分类旨在通过用户属性和社交关系确定用户的兴趣爱好,可通过图类数据的节点分类实现。多数基于图卷积神经网络(GCN)的节点分类方法仅能处理高同质率数据集,但社交网络数据集通常具有较高的异质率。针对社交网络数据集同质率较低的问题,提出一种基于特征对比学习的图卷积神经网络(CLGCN)模型。通过预训练的组合标签构造相似性矩阵,根据相似性矩阵进行图卷积。利用特征对比学习分别定义类别相同和不同的邻居节点对为正负样本对,最小化特征对比的损失函数,使同类节点对的特征表达相似性更高及异类节点对的特征表达可区分性更强。实验结果表明,CLGCN模型在3个低同质率社交网络数据集上的节点分类准确率分别达到93.5%、81.4%和67.9%,均高于对比模型。 展开更多
关键词 社交网络 对比学习 同质率 图卷积神经网络 节点分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部