期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征对比学习和图卷积的社交网络用户分类
被引量:
1
1
作者
李
政学
李
枝
名
+1 位作者
彭德中
陈杰
《计算机工程》
CAS
CSCD
北大核心
2024年第4期258-266,共9页
社交网络用户分类旨在通过用户属性和社交关系确定用户的兴趣爱好,可通过图类数据的节点分类实现。多数基于图卷积神经网络(GCN)的节点分类方法仅能处理高同质率数据集,但社交网络数据集通常具有较高的异质率。针对社交网络数据集同质...
社交网络用户分类旨在通过用户属性和社交关系确定用户的兴趣爱好,可通过图类数据的节点分类实现。多数基于图卷积神经网络(GCN)的节点分类方法仅能处理高同质率数据集,但社交网络数据集通常具有较高的异质率。针对社交网络数据集同质率较低的问题,提出一种基于特征对比学习的图卷积神经网络(CLGCN)模型。通过预训练的组合标签构造相似性矩阵,根据相似性矩阵进行图卷积。利用特征对比学习分别定义类别相同和不同的邻居节点对为正负样本对,最小化特征对比的损失函数,使同类节点对的特征表达相似性更高及异类节点对的特征表达可区分性更强。实验结果表明,CLGCN模型在3个低同质率社交网络数据集上的节点分类准确率分别达到93.5%、81.4%和67.9%,均高于对比模型。
展开更多
关键词
社交网络
对比学习
同质率
图卷积神经网络
节点分类
下载PDF
职称材料
题名
基于特征对比学习和图卷积的社交网络用户分类
被引量:
1
1
作者
李
政学
李
枝
名
彭德中
陈杰
机构
四川大学计算机学院
出处
《计算机工程》
CAS
CSCD
北大核心
2024年第4期258-266,共9页
基金
国家自然科学基金面上项目(61971296)。
文摘
社交网络用户分类旨在通过用户属性和社交关系确定用户的兴趣爱好,可通过图类数据的节点分类实现。多数基于图卷积神经网络(GCN)的节点分类方法仅能处理高同质率数据集,但社交网络数据集通常具有较高的异质率。针对社交网络数据集同质率较低的问题,提出一种基于特征对比学习的图卷积神经网络(CLGCN)模型。通过预训练的组合标签构造相似性矩阵,根据相似性矩阵进行图卷积。利用特征对比学习分别定义类别相同和不同的邻居节点对为正负样本对,最小化特征对比的损失函数,使同类节点对的特征表达相似性更高及异类节点对的特征表达可区分性更强。实验结果表明,CLGCN模型在3个低同质率社交网络数据集上的节点分类准确率分别达到93.5%、81.4%和67.9%,均高于对比模型。
关键词
社交网络
对比学习
同质率
图卷积神经网络
节点分类
Keywords
social network
contrastive learning
homogeneity rate
Graph Convolutional Neural Network(GCN)
node classification
分类号
TP399 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征对比学习和图卷积的社交网络用户分类
李
政学
李
枝
名
彭德中
陈杰
《计算机工程》
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部