期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的负荷预测 被引量:2
1
作者 李德 赵金脉 +1 位作者 李大华 田禾 《能源工程》 2022年第6期75-79,共5页
电力负荷预测对于保证大扰动下的系统稳定、优化智能电网中的能源分配具有重要意义。传统的预测模型主要基于时间序列分析,由于其不可忽略的预测误差,已经不能完全满足电力系统的实际需要。为提高预测精度,将时间序列数据分析转变为图... 电力负荷预测对于保证大扰动下的系统稳定、优化智能电网中的能源分配具有重要意义。传统的预测模型主要基于时间序列分析,由于其不可忽略的预测误差,已经不能完全满足电力系统的实际需要。为提高预测精度,将时间序列数据分析转变为图像处理,并利用计算机图像领域广泛使用的深度学习方法进行电力负荷预测。卷积神经网络(convolution neural network,CNN)作为图像处理的有力工具,尽管已有学者将其用于时间序列数据处理,但仍是将数据作为序列矩阵处理,并未体现出CNN处理图像矩阵的优势。因此提出基于序列到图像转换的CNN(sequence to image convolutional neural network,STI-CNN),将负荷序列转换为负荷图像,使CNN可以更有效地提取相邻信息特征,充分考虑到各种外部影响因素,使用双分支深度网络模型对输入数据进行精确聚类,通过STI-CNN方法进行负荷预测。负荷预测实验结果表明,所提STI-CNN方法在不同的预测指标方面都有卓越的表现,所用预测时间更短,具有更高准确度。 展开更多
关键词 短期负荷预测 卷积神经网络 负荷序列 负荷图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部