We propose a new repeat-until-success (RUS) measurement-based scheme to implement quantum controlled phase gates according to the effect of dipole-induced-transparency (DIT) in a cavity and single-photon interfere...We propose a new repeat-until-success (RUS) measurement-based scheme to implement quantum controlled phase gates according to the effect of dipole-induced-transparency (DIT) in a cavity and single-photon interference at a 50:50 beam-splitter. In our scheme, the DIT effect can appropriately attach a photon to the state of the dipoles according to their initial state, and in this way, a suitably encoded dipole-photon state is thus prepared. The measurement of the photon after it passing through a 50:50 beam-splitter can project the encoded matter-photon state to either a desired phase gate operation for the matter qubits or to their initial states. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60578050
文摘We propose a new repeat-until-success (RUS) measurement-based scheme to implement quantum controlled phase gates according to the effect of dipole-induced-transparency (DIT) in a cavity and single-photon interference at a 50:50 beam-splitter. In our scheme, the DIT effect can appropriately attach a photon to the state of the dipoles according to their initial state, and in this way, a suitably encoded dipole-photon state is thus prepared. The measurement of the photon after it passing through a 50:50 beam-splitter can project the encoded matter-photon state to either a desired phase gate operation for the matter qubits or to their initial states. The recurrence of the initial state permits us to implement the desired entangling gate in a RUS way.