高维多目标优化是指对目标维数大于三维的多目标问题(multi-objective optimization problem,简称MOP)进行优化.大多数传统的多目标进化算法采用Pareto支配关系指导搜索,很难在高维多目标优化问题上得到较为理想的结果.为此,提出了一种...高维多目标优化是指对目标维数大于三维的多目标问题(multi-objective optimization problem,简称MOP)进行优化.大多数传统的多目标进化算法采用Pareto支配关系指导搜索,很难在高维多目标优化问题上得到较为理想的结果.为此,提出了一种基于信息分离的高维多目标进化算法(multi-objective evolutionary algorithm based on information separation,简称ISEA).该算法在目标空间中将原坐标系进行旋转,使第1条坐标轴与向量(1,1,…,1)T平行.ISEA定义转换坐标的第1个坐标值为收敛信息(convergence information,简称CI),剩余的坐标代表个体分布信息(diversity information,简称DI).同时,采用一种基于分层选择的邻域惩罚机制,利用一种由两个超圆锥组成的邻域形状保持种群的分布性,当个体被选入归档集后,其邻域内的个体将被惩罚进入下一层选择,防止邻近的个体同时被选入归档集.邻域形状的第1部分利用分布信息覆盖邻近的个体,第2部分覆盖边界上的差个体.与NNIA,?-MOEA,MSOPS,AR+DMO以及IBEA这5种经典算法进行了比较.实验结果表明,ISEA在处理高维多目标优化问题时具有良好的收敛性和分布性.展开更多
文摘高维多目标优化是指对目标维数大于三维的多目标问题(multi-objective optimization problem,简称MOP)进行优化.大多数传统的多目标进化算法采用Pareto支配关系指导搜索,很难在高维多目标优化问题上得到较为理想的结果.为此,提出了一种基于信息分离的高维多目标进化算法(multi-objective evolutionary algorithm based on information separation,简称ISEA).该算法在目标空间中将原坐标系进行旋转,使第1条坐标轴与向量(1,1,…,1)T平行.ISEA定义转换坐标的第1个坐标值为收敛信息(convergence information,简称CI),剩余的坐标代表个体分布信息(diversity information,简称DI).同时,采用一种基于分层选择的邻域惩罚机制,利用一种由两个超圆锥组成的邻域形状保持种群的分布性,当个体被选入归档集后,其邻域内的个体将被惩罚进入下一层选择,防止邻近的个体同时被选入归档集.邻域形状的第1部分利用分布信息覆盖邻近的个体,第2部分覆盖边界上的差个体.与NNIA,?-MOEA,MSOPS,AR+DMO以及IBEA这5种经典算法进行了比较.实验结果表明,ISEA在处理高维多目标优化问题时具有良好的收敛性和分布性.
基金国家高技术研究发展计划基金(863)(the National High-Tech Research and Development Plan of China under Grant No.2001AA114060)留学回国人员科研启动基金(The Project-sponsored by SRF for ROCS+2 种基金SEM教外司留[2005]546号)湖南省自科基金(the Natural ScienceFoundation of Hunan Province of China under Grant No.05JJ30125)湖南省教育厅重点科研项目(No.06A074)
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773047)国家高技术研究发展计划(863)(theNational High- Tech Research and Development Plan of China under Grant No.2001AA114060)+3 种基金湖南省自然科学基金(the NaturalScience Foundation of Hunan Province of China under Grant No.05JJ30125)教育部留学回国人员科研启动基金(The Project-sponsored bySRF for ROCSSEM教外司留[2005]546号)湖南省教育厅重点科研项目(No.06A074)