The good quality of 200 pairs of highly strained In_(0.24)GaAs/GaAs multi-quantum-well(MQW)structure is demonstrated by the x-ray diffraction and photoluminescence curves.Large-area modulators based on the pseudomorph...The good quality of 200 pairs of highly strained In_(0.24)GaAs/GaAs multi-quantum-well(MQW)structure is demonstrated by the x-ray diffraction and photoluminescence curves.Large-area modulators based on the pseudomorphic In_(0.24)GaAs/GaAs MQW are designed and fabricated successfully,where the diameters are not less than 3 mm and the working wavelength is extended to 1064 nm.The single pass modulation depth is demonstrated to be 0.34 at 1064 nm at a reverse voltage of 80 V.展开更多
The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic s...The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic structure precisely. The threading dislocations are reduced. We also optimize the growth and annealing parameters of the InGaAs quantum well (QW). The 1.3-μm GaAs based metamorphic InGaAs QW is completed. A 1.3-μm GaAs based metamorphic laser is reported.展开更多
The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we...The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we develop a proper In deposition amount(θ) for SQD growth,according to the measured critical θ for test QD nucleation(θ;).The proper ratio θ/θ;,with a large tolerance of the variation of the real substrate temperature(T;),is 0.964-0.971 at the edge and> 0.989 but < 0.996 in the center of a 1/4-piece semi-insulating wafer,and around 0.9709 but < 0.9714 in the center of a 1/4-piece N;wafer as shown in the evolution of QD size and density as θ/θ;varies.Bright SQDs with spectral lines at 905 nm-935 nm nucleate at the edge and correlate with individual 7 nm-8 nm-height QDs in atomic force microscopy,among dense 1 nm-5 nm-height small QDs with a strong spectral profile around 860 nm-880 nm.The higher T;in the center forms diluter,taller and uniform QDs,and very dilute SQDs for a proper θ/θ;:only one 7-nm-height SQD in25 μm;.On a 2-inch(1 inch = 2.54 cm) semi-insulating wafer,by using θ/θ;= 0.961,SQDs nucleate in a circle in 22%of the whole area.More SQDs will form in the broad high-T;region in the center by using a proper θ/θ;.展开更多
基金the National Natural Science Foundation of China under Grant Nos 61274069,61176053 and 61021003the National High-Technology Research and Development Program of China under Grant No 2012AA012202the National Basic Research Program of China under Grant Nos 2012CB933503 and 2013CB932904.
文摘The good quality of 200 pairs of highly strained In_(0.24)GaAs/GaAs multi-quantum-well(MQW)structure is demonstrated by the x-ray diffraction and photoluminescence curves.Large-area modulators based on the pseudomorphic In_(0.24)GaAs/GaAs MQW are designed and fabricated successfully,where the diameters are not less than 3 mm and the working wavelength is extended to 1064 nm.The single pass modulation depth is demonstrated to be 0.34 at 1064 nm at a reverse voltage of 80 V.
基金supported by the National Natural Science Foundation of China (Nos.90921015 and 10734060)the National Basic Research Program of China (No.2010CB327601)
文摘The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic structure precisely. The threading dislocations are reduced. We also optimize the growth and annealing parameters of the InGaAs quantum well (QW). The 1.3-μm GaAs based metamorphic InGaAs QW is completed. A 1.3-μm GaAs based metamorphic laser is reported.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB933304)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01010200)the National Natural Science Foundation of China(Grant No.65015196)
文摘The test-QD in-situ annealing method could surmount the critical nucleation condition of InAs/GaAs single quantum dots(SQDs) to raise the growth repeatability.Here,through many growth tests on rotating substrates,we develop a proper In deposition amount(θ) for SQD growth,according to the measured critical θ for test QD nucleation(θ;).The proper ratio θ/θ;,with a large tolerance of the variation of the real substrate temperature(T;),is 0.964-0.971 at the edge and> 0.989 but < 0.996 in the center of a 1/4-piece semi-insulating wafer,and around 0.9709 but < 0.9714 in the center of a 1/4-piece N;wafer as shown in the evolution of QD size and density as θ/θ;varies.Bright SQDs with spectral lines at 905 nm-935 nm nucleate at the edge and correlate with individual 7 nm-8 nm-height QDs in atomic force microscopy,among dense 1 nm-5 nm-height small QDs with a strong spectral profile around 860 nm-880 nm.The higher T;in the center forms diluter,taller and uniform QDs,and very dilute SQDs for a proper θ/θ;:only one 7-nm-height SQD in25 μm;.On a 2-inch(1 inch = 2.54 cm) semi-insulating wafer,by using θ/θ;= 0.961,SQDs nucleate in a circle in 22%of the whole area.More SQDs will form in the broad high-T;region in the center by using a proper θ/θ;.