本文首先构建了激励型需求响应的实现框架,阐述了负荷服务主体如何聚集需求侧资源参与电力市场业务。然后,分析了基于长短时记忆(long short memory,LSTM)算法的特征,并提出了一种基于LSTM数据驱动的激励型需求响应用户行为预测方法。最...本文首先构建了激励型需求响应的实现框架,阐述了负荷服务主体如何聚集需求侧资源参与电力市场业务。然后,分析了基于长短时记忆(long short memory,LSTM)算法的特征,并提出了一种基于LSTM数据驱动的激励型需求响应用户行为预测方法。最后,为验证所提预测方法的准确性,对所提预测方法进行了算例分析。仿真结果表明,与最小二乘法和k邻近预测方法相比,基于LSTM数据驱动的激励型需求响应用户行为预测方法预测精度更高。展开更多
文摘本文首先构建了激励型需求响应的实现框架,阐述了负荷服务主体如何聚集需求侧资源参与电力市场业务。然后,分析了基于长短时记忆(long short memory,LSTM)算法的特征,并提出了一种基于LSTM数据驱动的激励型需求响应用户行为预测方法。最后,为验证所提预测方法的准确性,对所提预测方法进行了算例分析。仿真结果表明,与最小二乘法和k邻近预测方法相比,基于LSTM数据驱动的激励型需求响应用户行为预测方法预测精度更高。