Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slop...Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slopes along the radial direction of the loop, which requires that the crossing bands are either right-tilted or left-tilted at the same time. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-Ⅱ NLS by tuning its spin-orbit coupling(SOC). High-quality Mg3 Bi2 films are grown by molecular beam epitaxy(MBE). By in-situ angle resolved photoemission spectroscopy(ARPES), a pair of surface resonance bands around theГ point are clearly seen. This shows that Mg3Bi2 films grown by MBE are Mg(1)-terminated by comparing the ARPES spectra with the first principles calculations results. Moreover, the temperature dependent weak anti-localization effect in Mg3Bi2 films is observed under magneto-transport measurements, which shows clear two-dimensional(2 D) e-e scattering characteristics by fitting with the Hikami–Larkin–Nagaoka model. Therefore, by combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states. This paves the way for Mg3Bi2 to be used as an ideal material platform to study the exotic features of type-Ⅱ nodal line semimetals and the topological phase transition by tuning its SOC.展开更多
Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and elect...Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and electrical resistivity. Evidence for at least three magnetic phases is found in these samples. In zero field, both samples undergo an antiferromagnetic transition at a relatively high temperature, and with further cooling they pass through another antiferromagnetic phase,before reaching a ferromagnetic ground state. Furthermore, the magnetic order can be tuned by varying the site occupation of Au. Such a tunable magnetic order may provide an opportunity for exploring the potential quantum critical behavior in this system.展开更多
The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influe...The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influence on the γ → α phase transition was not explicitly verified, due to the fact that the phase transition happened in the bulk-layer, leaving the surface in the γ phase. Here in our work, we circumvent this issue by investigating the effect of alloying addition of La on Ce, by means of crystal structure, electronic transport and angle resolved photoemission spectroscopy measurements, together with a phenomenological periodic Anderson model and a modified Anderson impurity model. Our current researches indicate that the weakening of f–c hybridization is the major factor in the suppression of γ → α phase transition by La doping. The consistency of our results with the effects of other rare earth and actinide alloying additions on the γ → α phase transition of Ce is also discussed. Our work demonstrates the importance of the interaction between f and c electrons in understanding the unconventional phase transition in Ce, which is intuitive for further researches on other rare earth and actinide metals and alloys with similar phase transition behaviors.展开更多
A key issue in metallic uranium and its related actinide compounds is the character of the f electrons, whether it is localized or itinerant.Here we grew well ordered uranium films on a W(110) substrate.The surface to...A key issue in metallic uranium and its related actinide compounds is the character of the f electrons, whether it is localized or itinerant.Here we grew well ordered uranium films on a W(110) substrate.The surface topography was investigated by scanning tunneling microscopy.The Fermi surface and band structure of the grown films were studied by angle-resolved photoemission spectroscopy.Large spectral weight can be observed around the Fermi level, which mainly comes from the f states.Additionally, we provided direct evidence that the f bands hybridize with the conduction bands in the uranium ordered films, which is different from previously reported mechanism of the direct f–f interaction.We propose that the above two mechanisms both exist in this system by manifesting themselves in different momentum spaces.Our results give a comprehensive study of the ordered uranium films and may throw new light on the study of the 5 f-electron character and physical properties of metallic uranium and other related actinide materials.展开更多
We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measurin...We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.展开更多
Bilayer superconducting films with tunable transition temperature(Tc) are a critical ingredient to the fabrication of high-performance transition edge sensors. Commonly chosen materials include Mo/Au, Mo/Cu, Ti/Au, ...Bilayer superconducting films with tunable transition temperature(Tc) are a critical ingredient to the fabrication of high-performance transition edge sensors. Commonly chosen materials include Mo/Au, Mo/Cu, Ti/Au, and Ti/Al systems. Here in this work, titanium/indium(Ti/In) bilayer superconducting films are successfully fabricated on SiO2/Si(001)substrates by molecular beam epitaxy(MBE). The success in the epitaxial growth of indium on titanium is achieved by lowering the substrate temperature to-150?C during indium evaporation. We measure the critical temperature under a bias current of 10 μA, and obtain different superconducting transition temperatures ranging from 645 m K to 2.7 K by adjusting the thickness ratio of Ti/In. Our results demonstrate that the transition temperature decreases as the thickness ratio of Ti/In increases.展开更多
We have systematically studied the behaviors of the resistivity and magnetization of CeSb2 single crystals as a function of temperature and external field. Four anomalies in the resistivity/magnetization-versus-temper...We have systematically studied the behaviors of the resistivity and magnetization of CeSb2 single crystals as a function of temperature and external field. Four anomalies in the resistivity/magnetization-versus-temperature curves are observed at low magnetic field. They are located at 15.5 K, 11.5 K, 9.5 K, and 6.5 K, corresponding to the paramagnetic–magnetically ordered state(MO), MO-antiferromagnetic(AFM), AFM–AFM, and AFM–ferromagnetic(FM) transitions, respectively.The anomaly at 9.5 K is only visible with H‖[010] by magnetic susceptibility measurements, indicating that the AFM–AFM transition only happens along [010] direction in ab-plane. The four magnetic transitions are strongly suppressed by high external field. Finally, the field-temperature phase diagrams of CeSb2 with different orientations of the applied field in ab-plane are constructed and indicate the highly anisotropic nature of the magnetization of CeSb2.展开更多
基金Supported by the Science Challenge Project under Grant No TZ2016004the Opening Foundation of State Key Laboratory of High Performance Computing under Grant No 201601-02+4 种基金the Foundation of President of CAEP under Grant No 201501040the Natural Science Foundation of Hunan Province under Grant No 2016JJ1021the National Basic Research Program of China under Grant Nos 2015CB921303 and 2012YQ13012508the General Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G17the Youth Talent Lifting Project under Grant No 17-JCJQ-QT-004
文摘Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slopes along the radial direction of the loop, which requires that the crossing bands are either right-tilted or left-tilted at the same time. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-Ⅱ NLS by tuning its spin-orbit coupling(SOC). High-quality Mg3 Bi2 films are grown by molecular beam epitaxy(MBE). By in-situ angle resolved photoemission spectroscopy(ARPES), a pair of surface resonance bands around theГ point are clearly seen. This shows that Mg3Bi2 films grown by MBE are Mg(1)-terminated by comparing the ARPES spectra with the first principles calculations results. Moreover, the temperature dependent weak anti-localization effect in Mg3Bi2 films is observed under magneto-transport measurements, which shows clear two-dimensional(2 D) e-e scattering characteristics by fitting with the Hikami–Larkin–Nagaoka model. Therefore, by combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states. This paves the way for Mg3Bi2 to be used as an ideal material platform to study the exotic features of type-Ⅱ nodal line semimetals and the topological phase transition by tuning its SOC.
基金National Key Research and Development Program of China (2017YFA0303104)National Natural Science Foundation of China (11904335,11974319, 21903074, 11774320, 11904334, 12122409, 11874330)Special Funds of Institute of Materials (TP02201905)。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874330,11504342,11504341,and U1630248)the National Key R&D Program of China(Grant No.2017YFA0303104)the Science Challenge Project,China(Grant No.TZ2016004)
文摘Two nonstoichiometric UAu_(1-x)Sb_2(x = 0.25, 0.1) single crystals are successfully synthesized using a flux method,and their physical properties are comprehensively studied by measuring the dc-magnetization and electrical resistivity. Evidence for at least three magnetic phases is found in these samples. In zero field, both samples undergo an antiferromagnetic transition at a relatively high temperature, and with further cooling they pass through another antiferromagnetic phase,before reaching a ferromagnetic ground state. Furthermore, the magnetic order can be tuned by varying the site occupation of Au. Such a tunable magnetic order may provide an opportunity for exploring the potential quantum critical behavior in this system.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1601100 and 2017YFA0303104)the SPC-Lab Research Fund(Grant No.WDZC201901)+3 种基金the Science Challenge Project(Grant Nos.TZ2016004 and TZ2018002)the National Natural Science Foundation of China(Grant Nos.U1630248,11774320,and 11904334)Special Funds of Institute of Materials(Grant No.TP02201904)the Development Funds(Grant No.JZX7Y201901SY00900107)。
文摘The hybridization between the localized 4f level(f) with conduction(c) electrons in γ-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influence on the γ → α phase transition was not explicitly verified, due to the fact that the phase transition happened in the bulk-layer, leaving the surface in the γ phase. Here in our work, we circumvent this issue by investigating the effect of alloying addition of La on Ce, by means of crystal structure, electronic transport and angle resolved photoemission spectroscopy measurements, together with a phenomenological periodic Anderson model and a modified Anderson impurity model. Our current researches indicate that the weakening of f–c hybridization is the major factor in the suppression of γ → α phase transition by La doping. The consistency of our results with the effects of other rare earth and actinide alloying additions on the γ → α phase transition of Ce is also discussed. Our work demonstrates the importance of the interaction between f and c electrons in understanding the unconventional phase transition in Ce, which is intuitive for further researches on other rare earth and actinide metals and alloys with similar phase transition behaviors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874330)Science Challenge Project,China(Grant No.TZ2016004)the National Key Research and Development Program of China(Grant No.2017YFA0303104)
文摘A key issue in metallic uranium and its related actinide compounds is the character of the f electrons, whether it is localized or itinerant.Here we grew well ordered uranium films on a W(110) substrate.The surface topography was investigated by scanning tunneling microscopy.The Fermi surface and band structure of the grown films were studied by angle-resolved photoemission spectroscopy.Large spectral weight can be observed around the Fermi level, which mainly comes from the f states.Additionally, we provided direct evidence that the f bands hybridize with the conduction bands in the uranium ordered films, which is different from previously reported mechanism of the direct f–f interaction.We propose that the above two mechanisms both exist in this system by manifesting themselves in different momentum spaces.Our results give a comprehensive study of the ordered uranium films and may throw new light on the study of the 5 f-electron character and physical properties of metallic uranium and other related actinide materials.
基金supported by the Natural Science Foundation of China Academy of Engineering Physic(Grant No.2014A0301013)the National Natural Science Foundation of China(Grant Nos.11304291 and 11504342)
文摘We report the study of a low temperature cluster glass state in 5% Mn-doped UGa3 heavy fermion compound. This compound transforms from a paramagnetic state to a spin-cluster glass state, which is confirmed by measuring the dc susceptibility and magnetization. The ac susceptibility exhibits a frequency-dependent peak around Tf, which provides direct evidence of the cluster glass state. By analyzing the field-dependent magnetization and frequency-dependent ac susceptibility in detail, we deduce that this compound forms a spin-cluster glass state below Tf.
文摘Bilayer superconducting films with tunable transition temperature(Tc) are a critical ingredient to the fabrication of high-performance transition edge sensors. Commonly chosen materials include Mo/Au, Mo/Cu, Ti/Au, and Ti/Al systems. Here in this work, titanium/indium(Ti/In) bilayer superconducting films are successfully fabricated on SiO2/Si(001)substrates by molecular beam epitaxy(MBE). The success in the epitaxial growth of indium on titanium is achieved by lowering the substrate temperature to-150?C during indium evaporation. We measure the critical temperature under a bias current of 10 μA, and obtain different superconducting transition temperatures ranging from 645 m K to 2.7 K by adjusting the thickness ratio of Ti/In. Our results demonstrate that the transition temperature decreases as the thickness ratio of Ti/In increases.
基金supported by the Science Challenge Project(Grant No.TZ2016004)the Dean Foundation of China Academy of Engineering Physics(Grant No.201501040)the National Basic Research Program of China(Grant No.2015CB921303)
文摘We have systematically studied the behaviors of the resistivity and magnetization of CeSb2 single crystals as a function of temperature and external field. Four anomalies in the resistivity/magnetization-versus-temperature curves are observed at low magnetic field. They are located at 15.5 K, 11.5 K, 9.5 K, and 6.5 K, corresponding to the paramagnetic–magnetically ordered state(MO), MO-antiferromagnetic(AFM), AFM–AFM, and AFM–ferromagnetic(FM) transitions, respectively.The anomaly at 9.5 K is only visible with H‖[010] by magnetic susceptibility measurements, indicating that the AFM–AFM transition only happens along [010] direction in ab-plane. The four magnetic transitions are strongly suppressed by high external field. Finally, the field-temperature phase diagrams of CeSb2 with different orientations of the applied field in ab-plane are constructed and indicate the highly anisotropic nature of the magnetization of CeSb2.