期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态多种群自定义变种粒子群算法的无人机探索路径规划
1
作者 蒋文彬 杨忠 +3 位作者 卓浩泽 廖禄伟 朱泽 王先坦 《应用科技》 CAS 2024年第5期263-271,共9页
针对传统粒子群算法(particle swarm optimization,PSO)存在的粒子更新思路单一、随机性受限、收敛速度慢和易陷入局部最优等问题,提出一种动态多种群自定义变种粒子群算法(dynamic multi-swarm customized variant particle swarm opti... 针对传统粒子群算法(particle swarm optimization,PSO)存在的粒子更新思路单一、随机性受限、收敛速度慢和易陷入局部最优等问题,提出一种动态多种群自定义变种粒子群算法(dynamic multi-swarm customized variant particle swarm optimization,DMCVPSO),旨在更高效地完成复杂未知环境下的无人机(unmanned aerial vehicle,UAV)快速探索任务。首先,在综合考虑诸多限制因素后构建聚合适应度函数。其次,该算法根据每代粒子的适应度动态划分多种群,针对各子种群的特点引入不同的并行更新策略,引入莱维飞行、贪婪策略有利于优势群进行更加细密有效的搜索;采用概率性混合变异的策略降低劣势群探索的盲目性;融合余弦函数和自适应策略用于平衡混合群的局部开采和全局勘探能力。最后,通过数值仿真和三维可视仿真平台对该算法进行可行性验证。结果表明,所提出的优化算法有助于解决收敛速度过慢、陷入局部最优等问题,提高无人机在复杂未知环境中的探索效率。 展开更多
关键词 路径规划 多旋翼无人机 粒子群优化 自主探索 聚合适应度 动态多种群 自定义变种 参数自适应
下载PDF
State Estimation Method for GNSS/INS/Visual Multi-sensor Fusion Based on Factor Graph Optimization for Unmanned System
2
作者 ZHU Zekun YANG Zhong +2 位作者 XUE Bayang ZHANG Chi YANG Xin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期43-51,共9页
With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa... With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss. 展开更多
关键词 state estimation multi-sensor fusion combined navigation factor graph optimization complex environments
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部