为了提高跟踪过程中目标位置的定位精度,提出了基于显著性区域加权的相关滤波目标跟踪算法。本文在高效卷积算子跟踪算法(Efficient Convolution Operators for Tracking,ECO)的跟踪框架基础上,首先采用预训练的改进残差网络SE-ResNet...为了提高跟踪过程中目标位置的定位精度,提出了基于显著性区域加权的相关滤波目标跟踪算法。本文在高效卷积算子跟踪算法(Efficient Convolution Operators for Tracking,ECO)的跟踪框架基础上,首先采用预训练的改进残差网络SE-ResNet来提取不同层的多分辨率特征,充分利用浅层和深层特征的不同特性来增强特征表达,通过因式分解的卷积求出相关滤波的响应图;然后采用背景对像模型来获取目标的显著性图,并使用显著性图来对相关滤波的响应图进行加权,提高定位精度;最后,在视觉目标跟踪(Visual Object Tracking,VOT)竞赛上与8种流行的跟踪算法进行对比,在VOT2016和VOT2017竞赛上的平均重叠期望(Expected Average Overlap,EAO)得分分别达到了0.4157和0.3412,均优于其他算法。实验表明本算法可以有效提升目标跟踪中的定位精度,改善跟踪性能。展开更多
文摘为了提高跟踪过程中目标位置的定位精度,提出了基于显著性区域加权的相关滤波目标跟踪算法。本文在高效卷积算子跟踪算法(Efficient Convolution Operators for Tracking,ECO)的跟踪框架基础上,首先采用预训练的改进残差网络SE-ResNet来提取不同层的多分辨率特征,充分利用浅层和深层特征的不同特性来增强特征表达,通过因式分解的卷积求出相关滤波的响应图;然后采用背景对像模型来获取目标的显著性图,并使用显著性图来对相关滤波的响应图进行加权,提高定位精度;最后,在视觉目标跟踪(Visual Object Tracking,VOT)竞赛上与8种流行的跟踪算法进行对比,在VOT2016和VOT2017竞赛上的平均重叠期望(Expected Average Overlap,EAO)得分分别达到了0.4157和0.3412,均优于其他算法。实验表明本算法可以有效提升目标跟踪中的定位精度,改善跟踪性能。