结合静态模型计算和实验测试,从活化过电势、欧姆损失和浓差过电势三个方面量化分析了阴极Pt负载量和背压协同对质子膜燃料电池(PEMFC)性能的影响规律。考察了阴极Pt负载量为0.1、0.2、0.4 mg?cm^(-2),背压为100、150、200 k Pa条件下...结合静态模型计算和实验测试,从活化过电势、欧姆损失和浓差过电势三个方面量化分析了阴极Pt负载量和背压协同对质子膜燃料电池(PEMFC)性能的影响规律。考察了阴极Pt负载量为0.1、0.2、0.4 mg?cm^(-2),背压为100、150、200 k Pa条件下的燃料电池性能。通过比较发现,在上述条件任意组合下,随着电流密度增加,活化过电势、欧姆损失和浓差过电势逐渐加大,直接影响燃料电池性能;但在相同背压条件下,随着电流密度增加,低Pt负载量时的浓差过电势比高Pt负载量时增加得更快;同时发现,背压增加对提高燃料电池的性能有帮助,但背压增加对低Pt负载量比对高Pt负载量效果更明显。因此对于低Pt燃料电池,应适当提高运行背压以优化其性能。本文对上述实验结果的产生机理进行了探讨,并期望该结果能对低Pt/超低Pt燃料电池的设计及性能优化提供参考与借鉴。展开更多
文摘结合静态模型计算和实验测试,从活化过电势、欧姆损失和浓差过电势三个方面量化分析了阴极Pt负载量和背压协同对质子膜燃料电池(PEMFC)性能的影响规律。考察了阴极Pt负载量为0.1、0.2、0.4 mg?cm^(-2),背压为100、150、200 k Pa条件下的燃料电池性能。通过比较发现,在上述条件任意组合下,随着电流密度增加,活化过电势、欧姆损失和浓差过电势逐渐加大,直接影响燃料电池性能;但在相同背压条件下,随着电流密度增加,低Pt负载量时的浓差过电势比高Pt负载量时增加得更快;同时发现,背压增加对提高燃料电池的性能有帮助,但背压增加对低Pt负载量比对高Pt负载量效果更明显。因此对于低Pt燃料电池,应适当提高运行背压以优化其性能。本文对上述实验结果的产生机理进行了探讨,并期望该结果能对低Pt/超低Pt燃料电池的设计及性能优化提供参考与借鉴。
基金supported by the National Natural Science Foundation of China(21373135)Science Foundation of Ministry of Education of China(413064)and Program of Introducing Talents of Discipline to Universities,China("111 Project")(B13018)~~
基金funded by the National Key Research and Development Program of China(No.2016YFB0101201)the National Natural Science Foundation of China (No.21533005 and No. 21503134).