期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多任务学习在分子性质预测中的对比研究
1
作者 韩超 王皓 +2 位作者 健保 刘淇 文光 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第4期443-452,I0035,共11页
随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究,其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属性,然而此类研究目前较为有限.本文采用硬参数共享结构与损失函... 随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究,其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属性,然而此类研究目前较为有限.本文采用硬参数共享结构与损失函数加权方法来实现多任务分子性质预测.通过对比单任务基准与各类多任务模型在不同分子属性集上的性能,展示了多属性预测精度强烈依赖于属性间的关系,当关联变复杂时,硬参数共享可以提高预测精度,此外,恰当的损失函数加权方法有利于实现更均衡的多目标优化,使预测更准确.进一步的实验展示了多任务学习模型的计算效率优势及其在训练数据量受限时的预测性能优势. 展开更多
关键词 深度学习 多任务学习 分子属性预测 损失函数加权方法
下载PDF
Machine learning potential aided structure search for low-lying candidates of Au clusters
2
作者 Tonghe Ying Jianbao Zhu Wenguang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期613-619,共7页
A machine learning(ML)potential for Au clusters is developed through training on a dataset including several different sized clusters.This ML potential accurately covers the whole configuration space of Au clusters in... A machine learning(ML)potential for Au clusters is developed through training on a dataset including several different sized clusters.This ML potential accurately covers the whole configuration space of Au clusters in a broad size range,thus expressing a good performance in search of their global minimum energy structures.Based on our potential,the low-lying structures of 17 different sized Au clusters are identified,which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo,revealing the critical size for the two-dimensional(2D)to three-dimensional(3D)structural transition.Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures. 展开更多
关键词 machine learning potential gold cluster first-principles calculation
下载PDF
Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
3
作者 Jianbao Zhu Wei Qin Wenguang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期485-491,共7页
Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semicon... Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semiconducting In_(2)Se_(2) or a 2D ferroelectricα-In_(2)Se_(3) layer.Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum,where the chirality of the spin texture reverses within the upper spin-split branch,in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point.The ferroelectric nature ofα-In_(2)Se_(3) further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field.Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction.This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications. 展开更多
关键词 spin-orbit splitting two-dimensional heterostructure first-principles calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部