Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the ...Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the Pb-Zn deposit hosted in sedimentary rocks, such as Mississippian Valley-, Sedex- and sandstone-type Pb-Zn deposits. However, the Lanping basin developed in the settings of strong tectonic activity of the continental crust, which could cause an effective material exchange between the lower crust and the upper mantle. The orebodies are clearly tectonically controlled without syngenetic features, which probably represents a new type of the sedimentary rock-hosted Pb-Zn deposit. The isotopic compositions of noble gases in ore-forming fluids indicate that 2%32% of helium (3He/4He = 0.19 Ra1.97 Ra) is derived from the mantle, 50.1% of neon (20Ne/22Ne = 10.4510.83; 21Ne/22Ne = 0.03) from the mantle, and considerable amount of xenon (129Xe/130Xe = 5.846.86; 134Xe/130Xe = 2.262.71) from the mantle, which show that mantle fluids played an important role in the ore formation. The ore-forming age of 6760 Ma obtained by Re-Os and 40Ar-39Ar dating methods is later than the host rock, which is coeval with the Himalayan alkali magmatism of the mantle source and mantle-crust source. In this paper, the mineralization of the Jinding and Baiyangping ore deposits is considered to be related to the mantle fluids which move upward with the magma or along the deep faults, and mix with the meteoritic brine in the crust to result in large-scale deposition.展开更多
基金Major State Basic Research Program(Grant No.G1999043201) State Scie nces Fund Program(Grant No.40272050).
文摘Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the Pb-Zn deposit hosted in sedimentary rocks, such as Mississippian Valley-, Sedex- and sandstone-type Pb-Zn deposits. However, the Lanping basin developed in the settings of strong tectonic activity of the continental crust, which could cause an effective material exchange between the lower crust and the upper mantle. The orebodies are clearly tectonically controlled without syngenetic features, which probably represents a new type of the sedimentary rock-hosted Pb-Zn deposit. The isotopic compositions of noble gases in ore-forming fluids indicate that 2%32% of helium (3He/4He = 0.19 Ra1.97 Ra) is derived from the mantle, 50.1% of neon (20Ne/22Ne = 10.4510.83; 21Ne/22Ne = 0.03) from the mantle, and considerable amount of xenon (129Xe/130Xe = 5.846.86; 134Xe/130Xe = 2.262.71) from the mantle, which show that mantle fluids played an important role in the ore formation. The ore-forming age of 6760 Ma obtained by Re-Os and 40Ar-39Ar dating methods is later than the host rock, which is coeval with the Himalayan alkali magmatism of the mantle source and mantle-crust source. In this paper, the mineralization of the Jinding and Baiyangping ore deposits is considered to be related to the mantle fluids which move upward with the magma or along the deep faults, and mix with the meteoritic brine in the crust to result in large-scale deposition.