Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A...Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.展开更多
基金Supported by the Aviation Science Foundation of China(2013ZC72006)
文摘Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units' failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to a- chieve fault tolerance after weapon units' failure due to attack or energy exhaustion. An improved ge- netic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.