Electrical and optical properties of InGaN/AlGaN double heterostructure blue light-emitting diodes were investigated.Measurement of the forward bias current-voltage behaviour of the device demonstrated a departure fro...Electrical and optical properties of InGaN/AlGaN double heterostructure blue light-emitting diodes were investigated.Measurement of the forward bias current-voltage behaviour of the device demonstrated a departure from the Shockley model of a p-n diode,and it was observed that the dominant mechanism of carrier transport across the junction is associated with carrier tunnelling.Electroluminescence experiments indicated that there was a main emission band around 2.80 eV and a relatively weaker peak at 3.2 eV.A significant blueshift of the optical emission band was observed,which was consistent with the tunnelling character of electrical characteristics.Furthermore,the degradation in I-V characteristics and the low resistance ohmic short of the device were observed.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.69806006,69636010,69976017 and 69987001the National High Technology Research&Development Project of China(No.863-715-011-0030).
文摘Electrical and optical properties of InGaN/AlGaN double heterostructure blue light-emitting diodes were investigated.Measurement of the forward bias current-voltage behaviour of the device demonstrated a departure from the Shockley model of a p-n diode,and it was observed that the dominant mechanism of carrier transport across the junction is associated with carrier tunnelling.Electroluminescence experiments indicated that there was a main emission band around 2.80 eV and a relatively weaker peak at 3.2 eV.A significant blueshift of the optical emission band was observed,which was consistent with the tunnelling character of electrical characteristics.Furthermore,the degradation in I-V characteristics and the low resistance ohmic short of the device were observed.