期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于半监督学习的短文本分类方法
被引量:
3
1
作者
孙学琛
高志强
+1 位作者
全志斌
施嘉
鸿
《山东理工大学学报(自然科学版)》
CAS
2012年第1期1-4,共4页
随着万维网的快速普及和发展,Web上出现了大量短文本,如科技文献摘要、微博和电子邮件等.短文本内容短小,相互联系,已标注数据获得困难,导致传统分类方法很难取得较高的分类精度.为了解决短文本分类问题,提出了一种基于半监督学习的迭...
随着万维网的快速普及和发展,Web上出现了大量短文本,如科技文献摘要、微博和电子邮件等.短文本内容短小,相互联系,已标注数据获得困难,导致传统分类方法很难取得较高的分类精度.为了解决短文本分类问题,提出了一种基于半监督学习的迭代分类算法(SS-ICA).它使用较少的已标记数据,利用短文本间的关系进行迭代分类.通过与常用分类方法进行对比表明,在标注数据较少的情况下SS-ICA比其他分类器有更高的分类精度.
展开更多
关键词
半监督学习
协作分类
短文本分类
数据挖掘
下载PDF
职称材料
题名
基于半监督学习的短文本分类方法
被引量:
3
1
作者
孙学琛
高志强
全志斌
施嘉
鸿
机构
东南大学计算机科学与工程学院
出处
《山东理工大学学报(自然科学版)》
CAS
2012年第1期1-4,共4页
基金
国家自然科学基金资助项目(60873153
60803061
61170165)
文摘
随着万维网的快速普及和发展,Web上出现了大量短文本,如科技文献摘要、微博和电子邮件等.短文本内容短小,相互联系,已标注数据获得困难,导致传统分类方法很难取得较高的分类精度.为了解决短文本分类问题,提出了一种基于半监督学习的迭代分类算法(SS-ICA).它使用较少的已标记数据,利用短文本间的关系进行迭代分类.通过与常用分类方法进行对比表明,在标注数据较少的情况下SS-ICA比其他分类器有更高的分类精度.
关键词
半监督学习
协作分类
短文本分类
数据挖掘
Keywords
semi-supervised learning
collective classification
short text classification
data mining
分类号
TP391.43 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于半监督学习的短文本分类方法
孙学琛
高志强
全志斌
施嘉
鸿
《山东理工大学学报(自然科学版)》
CAS
2012
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部