Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in t...Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.展开更多
基金supported by the National Natural Science Foundation of China (21303099)the National Basic Research Program of China(973 Program,2014CB660803)+1 种基金the Shanghai Municipal Education Commission(14ZZ097, B.3704713001)the Research Fund for Innovation Program of Shanghai University (K.10040713003)~~
文摘Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.