期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
激光带宽对等离子体中受激拉曼散射不稳定性的抑制效应 被引量:4
1
作者 赵耀 郑君 +3 位作者 陈民 翁苏明 盛政明 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2015年第3期59-68,共10页
本文研究了激光带宽对等离子体中受激拉曼散射不稳定性激发的抑制效应.通过改变激光参数和等离子体参数,利用一维粒子模拟验证了当激光带宽远大于线性增长率时,带宽对受激拉曼散射的线性增长阶段具有明显的抑制作用.模拟研究同时表明通... 本文研究了激光带宽对等离子体中受激拉曼散射不稳定性激发的抑制效应.通过改变激光参数和等离子体参数,利用一维粒子模拟验证了当激光带宽远大于线性增长率时,带宽对受激拉曼散射的线性增长阶段具有明显的抑制作用.模拟研究同时表明通过选择适当的调频参数和降低受激拉曼散射的线性增长率可以使带宽的抑制效应更明显.但是激光带宽并没有使受激拉曼散射完全消失,其抑制作用主要体现在延长不稳定性线性增长的时间. 展开更多
关键词 受激拉曼散射 激光带宽 惯性约束核聚变 参量不稳定
原文传递
均匀等离子体光栅的色散特性研究 被引量:3
2
作者 盛政明 张杰 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第10期6457-6464,共8页
最近研究表明,两束交叉激光脉冲在等离子体中传播时,可以诱导生成周期等离子体密度调制(或称等离子体布拉格光栅).分别利用传输矩阵法和耦合模理论,推导了激光斜入射时等离子体光栅的色散关系.两种方法均表明,均匀等离子体光栅存在着光... 最近研究表明,两束交叉激光脉冲在等离子体中传播时,可以诱导生成周期等离子体密度调制(或称等离子体布拉格光栅).分别利用传输矩阵法和耦合模理论,推导了激光斜入射时等离子体光栅的色散关系.两种方法均表明,均匀等离子体光栅存在着光子带隙结构,并且在带隙附近有强烈的色散.当激光斜入射时,带隙结构会呈现不同的偏振特性:S偏振光的带隙宽度随着入射角的增大而逐渐变宽,而P偏振光的带隙宽度随着入射角的增大先迅速变窄,在布儒斯特角入射时带隙消失,然后又随着入射角的增大而迅速变宽.超宽的光子带隙和超高的激光损伤阈值,使得等离子体光栅有望成为一种新型的操纵强激光脉冲的光子器件. 展开更多
关键词 等离子体光栅 传输矩阵法 耦合模理论 光子带隙
原文传递
Absorption of ultrashort intense lasers in laser–solid interactions
3
作者 盛政明 翁苏明 +4 位作者 王伟民 崔云千 陈民 张杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期52-65,共14页
With the advent of ultrashort high intensity laser pulses, laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applica... With the advent of ultrashort high intensity laser pulses, laser absorption during the laser–solid interactions has received significant attention over the last two decades since it is related to a variety of applications of high intensity lasers,including the hot electron production for fast ignition of fusion targets, table-top bright X-ray and gamma-ray sources,ion acceleration, compact neutron sources, and generally the creation of high energy density matters. Normally, some absorption mechanisms found for nanosecond long laser pulses also appear for ultrashort laser pulses. The peculiar aspects with ultrashort laser pulses are that their absorption depends significantly on the preplasma condition and the initial target structures. Meanwhile, relativistic nonlinearity and ponderomotive force associated with the laser pulses lead to new mechanisms or phenomena, which are usually not found with nanosecond long pulses. In this paper, we present an overview of the recent progress on the major absorption mechanisms in intense laser–solid interactions, where emphasis is paid to our related theory and simulation studies. 展开更多
关键词 laser absorption laser–solid interaction relativistic high intensity electron heating and acceleration
下载PDF
Acceleration of Protons from a Double-Layer or Multi-Ion-Mixed Foil Irradiated by Ultraintense Lasers
4
作者 王伟民 盛政明 +3 位作者 李玉同 KAWATA Shigeo 张杰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第3期277-283,共7页
Acceleration of protons by the radiation pressure of a circularly polarized laser pulse with the intensity up to 1021 W/cm^2 from a double-layer or multi-ion-mixed thin foil is investigated by two-dimensional particle... Acceleration of protons by the radiation pressure of a circularly polarized laser pulse with the intensity up to 1021 W/cm^2 from a double-layer or multi-ion-mixed thin foil is investigated by two-dimensional particle-in-cell simulations. The double-layer foil is composed of a heavy ion layer and a proton layer. It is found that the radiation pressure acceleration can be classified into three regimes according to the laser intensity due to the different critical intensities for laser transparency with different ion species. When the laser intensity is moderately high, the laser pushes the electrons neither so slowly nor so quickly that the protons can catch up with the electrons, while the heavy ions cannot. Therefore, the protons can be accelerated efficiently. The proton beam generated from the double-layer foil is of better quality and higher energy than that from a pure proton foil with the same areal electron density. When the laser intensity is relatively low, both the protons and heavy ions are accelerated together, which is not favorable to the proton acceleration. When the laser intensity is relatively high, neither the heavy ions nor the protons can be accelerated efficiently due to the laser transparency through the target. 展开更多
关键词 ion acceleration radiation pressure acceleration intense laser foil interaction particle-in-cell simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部