期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混沌映射的抗机器学习攻击强物理不可克隆函数
1
作者 汪鹏君 李刚 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2281-2288,共8页
物理不可克隆函数(PUF)在硬件安全领域具有广阔的应用前景,然而易受到基于机器学习等建模攻击。通过对强PUF电路结构和混沌映射机理的研究,该文提出一种可有效抵御机器学习建模攻击的PUF电路。该电路将原始激励作为混沌映射初始值,利用... 物理不可克隆函数(PUF)在硬件安全领域具有广阔的应用前景,然而易受到基于机器学习等建模攻击。通过对强PUF电路结构和混沌映射机理的研究,该文提出一种可有效抵御机器学习建模攻击的PUF电路。该电路将原始激励作为混沌映射初始值,利用PUF激励响应映射时间与混沌算法迭代深度之间的内在联系产生不可预测的混沌值,并采用PUF中间响应反馈加密激励,进一步提升激励与响应映射的复杂度,增强PUF的抗机器学习攻击能力。该PUF采用Artix-7 FPGA实现,测试结果表明,即使选用的激励响应对数量高达106组,基于逻辑回归、支持向量机和人工神经网络的攻击预测率仍接近50%的理想值,并具有良好的随机性、唯一性和稳定性。 展开更多
关键词 物理不可克隆函数 机器学习 混沌映射 响应反馈
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部