期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
含有色噪声的神经模糊Hammerstein模型分离辨识 被引量:6
1
作者 贾立 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第1期23-31,共9页
针对实际工业过程中普遍存在的有色噪声,本文提出一种基于递推增广最小二乘算法的神经模糊Hammerstein模型辨识方法,突破了传统的Hammerstein模型迭代分离算法.首先,利用多信号源实现Hammerstein模型中静态非线性环节和动态线性环节的分... 针对实际工业过程中普遍存在的有色噪声,本文提出一种基于递推增广最小二乘算法的神经模糊Hammerstein模型辨识方法,突破了传统的Hammerstein模型迭代分离算法.首先,利用多信号源实现Hammerstein模型中静态非线性环节和动态线性环节的分离,大大简化了辨识过程,提高了串联环节参数的分离精度.其次,利用长除法将噪声模型用有限脉冲响应模型逼近,采用增广递推最小二乘法进行线性环节的参数估计.最后,采用神经模糊模型拟合静态非线性环节,同时设计了神经模糊模型参数的非迭代优化算法,改善了模型的使用范围.该方法保证了模型的预测精度,对含有色噪声的非线性系统具有较好的拟合效果.仿真结果验证了上述方法的有效性. 展开更多
关键词 非线性系统 HAMMERSTEIN模型 多信号源 增广递推最小二乘算法 神经模糊模型
下载PDF
Identification of Neuro-Fuzzy Hammerstein Model Based on Probability Density Function
2
作者 贾立 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期703-707,共5页
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr... A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method. 展开更多
关键词 Probability clustering guarantees separate converge prior generalization conception squared nonlinearity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部