期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于联邦分割学习与低秩适应的RoBERTa预训练模型微调方法
1
作者 谢思静 《数据采集与处理》 CSCD 北大核心 2024年第3期577-587,共11页
微调后的大语言模型(Large language models,LLMs)在多任务中表现出色,但集中式训练存在用户隐私泄漏的风险。联邦学习(Federated learning,FL)通过本地训练避免了数据共享,但LLMs庞大的参数量对资源受限的设备和通信带宽构成挑战,导致... 微调后的大语言模型(Large language models,LLMs)在多任务中表现出色,但集中式训练存在用户隐私泄漏的风险。联邦学习(Federated learning,FL)通过本地训练避免了数据共享,但LLMs庞大的参数量对资源受限的设备和通信带宽构成挑战,导致在边缘网络中部署困难。结合分割学习(Split learning,SL),联邦分割学习可以有效解决这一问题。基于模型深层权重的影响更为显著,以及对部分层的训练准确率略低于整体模型训练的发现,本文按照Transformer层对模型进行分割,同时引入低秩适应(Low⁃rank adaption,LoRA)进一步降低资源开销和提升安全性。因此,在设备端,仅对最后几层进行低秩适应和训练,然后上传至服务器进行聚合。为了降低开销并保证模型性能,本文提出了基于联邦分割学习与LoRA的RoBERTa预训练模型微调方法。通过联合优化边缘设备的计算频率和模型微调的秩,在资源受限的情况下最大化秩,提高模型的准确率。仿真结果显示,仅训练LLMs最后3层的情况下,在一定范围内(1~32)增加秩的取值可以提高模型的准确率。同时,增大模型每轮的容忍时延和设备的能量阈值可以进一步提升模型的准确率。 展开更多
关键词 大语言模型 低秩适应 联邦学习 分割学习 联合优化
下载PDF
基于脉冲神经网络的无线空中联邦学习
2
作者 杨瀚哲 游家伟 +1 位作者 石远明 《移动通信》 2022年第9期14-19,共6页
联邦学习可以在保护数据隐私的同时,快速地从大量分布式数据中提炼智能模型,已经成为实现边缘人工智能的主流解决方案。然而,现有的联邦学习工作聚焦于在无线网络边缘部署传统的深度神经网络(如卷积神经网络等),给移动设备带来了巨大的... 联邦学习可以在保护数据隐私的同时,快速地从大量分布式数据中提炼智能模型,已经成为实现边缘人工智能的主流解决方案。然而,现有的联邦学习工作聚焦于在无线网络边缘部署传统的深度神经网络(如卷积神经网络等),给移动设备带来了巨大的计算负载和能量消耗。因此,提出将一种新的低消耗神经网络——脉冲神经网络,应用于联邦边缘学习中。相较于传统的深度神经网络,它训练所需的计算量和能量消耗更低。同时,为了减少通信开销,在每一轮的联邦学习训练中,提出利用空中计算技术来聚合所有局部模型的参数。整个问题是一个二次约束二次规划问题,为解决该问题,提出了一种基于分枝定界算法的算法。通过在CIFAR10数据集上的大量实验表明,该算法优于现有方法,如半正定松弛等。 展开更多
关键词 联邦学习 空中计算 脉冲神经网络 深度学习 凸优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部