期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的磁瓦表面孔洞和裂纹缺陷识别 被引量:14
1
作者 周敏 《兵器材料科学与工程》 CAS CSCD 北大核心 2020年第6期106-112,共7页
针对磁瓦表面孔洞和裂纹缺陷识别效率低、误检及漏检率高等问题,提出基于深度学习的缺陷检测识别方法。先将缺陷区与非缺陷区进行分割,用整合型Unet提高分割精度,该模型在编码部分使用Inception模块,增强特征提取能力,在解码部分引入注... 针对磁瓦表面孔洞和裂纹缺陷识别效率低、误检及漏检率高等问题,提出基于深度学习的缺陷检测识别方法。先将缺陷区与非缺陷区进行分割,用整合型Unet提高分割精度,该模型在编码部分使用Inception模块,增强特征提取能力,在解码部分引入注意力机制,提高缺陷区域关注度;后将分割的图像与原图进行"与"运算,得缺陷灰度图;最后构建一个分类卷积神经网络对提取到的缺陷灰度图进行缺陷种类识别。结果表明:整合型Unet的分割性能强于Unet和Segnet,能有效分割缺陷,分类卷积神经网络对提取的缺陷区图像识别准确率达97.5%,满足磁瓦表面孔洞和裂纹缺陷识别要求。 展开更多
关键词 磁瓦 整合型Unet 注意力机制 分割 提取 分类识别
下载PDF
基于PSO-SVM的FPC焊盘表面缺陷检测研究 被引量:6
2
作者 张秦玮 周敏 +1 位作者 高强 《组合机床与自动化加工技术》 北大核心 2020年第5期78-81,85,共5页
针对柔性线路板(FPC)焊盘表面的缺陷检测,建立了一种利用粒子群算法(PSO)进行参数寻优的PSO-SVM分类识别模型。首先通过OTSU法将焊盘从原始图像中分割出来,然后对其5种表面缺陷从形状、灰度、纹理三个方面提取了14维特征,接着用粒子群... 针对柔性线路板(FPC)焊盘表面的缺陷检测,建立了一种利用粒子群算法(PSO)进行参数寻优的PSO-SVM分类识别模型。首先通过OTSU法将焊盘从原始图像中分割出来,然后对其5种表面缺陷从形状、灰度、纹理三个方面提取了14维特征,接着用粒子群算法方法对支持向量机的参数优化以获得较高的识别准确率,最后对缺陷样本进行分类识别,并将其与GS-SVM和BP神经网络分类性能进行对比。实验证明了该方法可以对焊盘缺陷进行准确的分类识别。 展开更多
关键词 焊盘 柔性电路板 粒子群算法 支持向量机
下载PDF
基于深度学习的烧结断面识别分类研究
3
作者 阮志国 周敏 +1 位作者 高强 《传感器与微系统》 CSCD 北大核心 2022年第12期51-54,共4页
针对烧结机机尾断面烧结状态识别分类效率低、成本高等问题,提出一种基于深度学习的烧结断面识别分类方法。首先,利用YCbCr颜色空间转换结合中值滤波的方法对断面图像预处理;然后,利用粒子群优化(PSO)算法优化的Canny算子进行边缘检测,... 针对烧结机机尾断面烧结状态识别分类效率低、成本高等问题,提出一种基于深度学习的烧结断面识别分类方法。首先,利用YCbCr颜色空间转换结合中值滤波的方法对断面图像预处理;然后,利用粒子群优化(PSO)算法优化的Canny算子进行边缘检测,得到较好的分割结果;最后,构建LetNet—5卷积神经网络模型对断面灰度图分类识别,实验结果表明:该方法具有较好的识别分类效果。 展开更多
关键词 烧结断面 深度学习 YCBCR颜色空间 粒子群优化算法 LeNet—5模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部