期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向可穿戴多模生物信息传感网络的栈式自编码器优化情绪识别 被引量:12
1
作者 戴逸 王雪 +2 位作者 戴鹏 张蔚航 张鹏博 《计算机学报》 EI CSCD 北大核心 2017年第8期1750-1763,共14页
情绪识别是指采用无生命的传感器和计算机感知测量识别人类情绪状态,其主要环节包括情绪相关信号获取、特征提取以及分类识别.情绪识别可为人类情绪健康监测乃至情绪相关心理精神疾病的初筛提供科学依据.该文构建了多模可穿戴生物信息... 情绪识别是指采用无生命的传感器和计算机感知测量识别人类情绪状态,其主要环节包括情绪相关信号获取、特征提取以及分类识别.情绪识别可为人类情绪健康监测乃至情绪相关心理精神疾病的初筛提供科学依据.该文构建了多模可穿戴生物信息传感网络测量被测个体的多模情绪相关信号(脑电、脉搏以及血压),经由身体主站将信号传输至远程网络数据中心,并将情绪识别的结果进行网络发布,简化了测量结构,使得被测个体日常情绪监测和远程监控成为可能.由于信号测量和特征提取过程中存在不确定性,该文提出了栈式自编码器(基于深度学习理论)优化的情绪识别算法.71天时间跨度的实验结果表明,栈式自编码器预学习后的特征向量具有更高的一致性与可分性,情绪识别率较相关研究提高了约5%. 展开更多
关键词 情绪识别 多模感知测量 可穿戴生物信息传感网络 栈式自编码器 深度学习 物联网 传感器网络
下载PDF
癫痫发作瞬态带宽特征自适应检测方法 被引量:8
2
作者 张鹏博 王雪 +1 位作者 张蔚航 戴逸 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第6期1390-1397,共8页
癫痫是常见的神经系统疾病之一。癫痫发作的识别通常采用脑电测量记录中的癫痫发作起始点,以辅助医生进行诊断并对患者的发作状态报警。利用脑电信号的瞬态参数提出了一种自适应带宽特征,可用于提高癫痫发作检测精度。首先,利用经验模... 癫痫是常见的神经系统疾病之一。癫痫发作的识别通常采用脑电测量记录中的癫痫发作起始点,以辅助医生进行诊断并对患者的发作状态报警。利用脑电信号的瞬态参数提出了一种自适应带宽特征,可用于提高癫痫发作检测精度。首先,利用经验模态分解(EMD)求得脑电信号的本征模态函数(IMF),并计算特定阶次IMF的解析信号;其次,利用该解析信号求解瞬时幅值与瞬时频率,对EEG信号的带宽特征添加权重,得到可用于癫痫检测的自适应带宽特征(Adaptive Bandwidth);最后,利用该特征完成癫痫发作检测。采用长达118 h 49 min的癫痫患者临床脑电数据进行实验,实验结果表明,自适应带宽特征的敏感性、特异性、准确性参数均比原特征取得明显提高。自适应带宽特征可提高癫痫发作检测精度并降低时间延迟,便于及时采取治疗措施,为临床检测提供了重要依据。 展开更多
关键词 癫痫发作 脑电 经验模态分解 本征模态函数 带宽特征
下载PDF
多相水平集协同空间模糊聚类图像多目标分割 被引量:7
3
作者 王雪 李宣平 戴逸 《机械工程学报》 EI CAS CSCD 北大核心 2013年第20期10-15,共6页
图像多目标分割的研究对于机器视觉发展具有重要意义。多相水平集模型(Multiphase level set,MLS)对零水平集函数初始位置和噪声敏感,当初始位置不适宜、噪声较大时无法准确分割多目标。针对上述问题,提出一种多相水平集模型协同空间模... 图像多目标分割的研究对于机器视觉发展具有重要意义。多相水平集模型(Multiphase level set,MLS)对零水平集函数初始位置和噪声敏感,当初始位置不适宜、噪声较大时无法准确分割多目标。针对上述问题,提出一种多相水平集模型协同空间模糊C-均值聚类(Spatial fuzzy C-means,SFCM)的图像多目标分割算法,即SFCM-MLS算法。首先用空间模糊聚类获取图像多目标粗分割结果,然后用粗分割结果定义多相水平集模型的初始水平集函数对图像做精分割。针对人脑磁共振成像(Magnetic resonance imaging,MRI)图像和患有肿瘤的肝脏计算机扫描断层图像多目标分割试验结果表明,与经典多相水平集模型相比,SFCM-MLS算法对初始位置不敏感,提高了图像多目标分割的准确性。 展开更多
关键词 多相水平集空间模糊C-均值聚类协同 多目标分割
下载PDF
面向生物信息感知网络稀疏脑电测量的模糊粗糙情绪识别 被引量:6
4
作者 戴逸 王雪 +1 位作者 李宣平 张鹏博 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1693-1699,共7页
情绪健康与人们的工作生活乃至社会公共安全紧密相关。情绪识别通过测量表征情绪状态的生物信息识别人的个体情绪,为情绪健康状态辨识提供依据。生物信息感知网络可用于复杂环境生物信息的感知测量,对特定场景下的情绪监测具有重要意... 情绪健康与人们的工作生活乃至社会公共安全紧密相关。情绪识别通过测量表征情绪状态的生物信息识别人的个体情绪,为情绪健康状态辨识提供依据。生物信息感知网络可用于复杂环境生物信息的感知测量,对特定场景下的情绪监测具有重要意义。本文提出一种面向生物信息感知网络稀疏脑电测量的模糊粗糙情绪识别方法,采用稀疏脑电测量设备以及无线可穿戴生物传感节点构建多模生物信息感知网络,测量提取情绪相关信息,并对多模生物信息进行融合分析,针对情绪本身的模糊粗糙特性、依据脑电专注度模糊门限提出一种改进的模糊粗糙近邻分类算法(FRNN)。该方法削减了28.20%的运算量,提高了情绪识别效率;同时减少了无关情绪样本对分类准确率的影响,提高情绪识别准确率6%~7%,识别率65.53%高于同类研究成果。本文在可穿戴网络架构下实现了情绪的快速识别,可为日常情绪健康监测提供有效参考依据。 展开更多
关键词 情绪识别 可穿戴 稀疏脑电测量 生物信息感知网络 模糊粗糙分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部