Finite element method and ultrafast thermoelasticity model are combined to simulate the microbump formation irradiated by a femtosecond laser. It has been shown that the effect of microbump formation is related to the...Finite element method and ultrafast thermoelasticity model are combined to simulate the microbump formation irradiated by a femtosecond laser. It has been shown that the effect of microbump formation is related to the characteristic of incident femtosecond laser and the thermoelasticity properties of the film. The numerical results exhibit good agreements with the experimental results in both the shape and height of the conical microbump structure, which verify the effectiveness of the ultrafast thermoelasticity model in experiments. It should be helpful for selecting appropriate materials for nanotexturing of thin films by ultrafast lasers.展开更多
The transient time-resolved reflectivity of chromium film is studied by femtosecond pump-probe technique with a 70-fs laser. Experimental results show that the reflectivity change increases with the power of the pump ...The transient time-resolved reflectivity of chromium film is studied by femtosecond pump-probe technique with a 70-fs laser. Experimental results show that the reflectivity change increases with the power of the pump laser. The fast decrease of the reflectivity occurs between 0-200 fs which is mainly due to the electron-electron interaction. Subsequencely, the slower recovery of the reflectivity between 200-900 fs is mainly due to the electron-phonon coupling process. The reflectivity after 900 fs rises little to a near-constant value for the thermal equilibrium of the system. The experimental results can be explained properly with numerical simulation of the two-temperature model. It is helpful for understanding of the electron ultrafast dynamics in chromium film.展开更多
基金the Shanghai Science and Technology Committee (No.06SP07003 and 0652nm005)the National"973"Program of China (No.2006CB806000).
文摘Finite element method and ultrafast thermoelasticity model are combined to simulate the microbump formation irradiated by a femtosecond laser. It has been shown that the effect of microbump formation is related to the characteristic of incident femtosecond laser and the thermoelasticity properties of the film. The numerical results exhibit good agreements with the experimental results in both the shape and height of the conical microbump structure, which verify the effectiveness of the ultrafast thermoelasticity model in experiments. It should be helpful for selecting appropriate materials for nanotexturing of thin films by ultrafast lasers.
基金supported by the National Natural Science Foundation of China (No. 60878035)the Shanghai Science and Technology Committee (No.07SA14)the National "973" Program of China (No.2006CB806000)
文摘The transient time-resolved reflectivity of chromium film is studied by femtosecond pump-probe technique with a 70-fs laser. Experimental results show that the reflectivity change increases with the power of the pump laser. The fast decrease of the reflectivity occurs between 0-200 fs which is mainly due to the electron-electron interaction. Subsequencely, the slower recovery of the reflectivity between 200-900 fs is mainly due to the electron-phonon coupling process. The reflectivity after 900 fs rises little to a near-constant value for the thermal equilibrium of the system. The experimental results can be explained properly with numerical simulation of the two-temperature model. It is helpful for understanding of the electron ultrafast dynamics in chromium film.