Shao Z 与 He Wei-hua 等人中提出了所谓同时基于大整数分解和离散对数问题的数字签名方案,其意图是只要这两个数学难题不同时被攻破,则其方案就是安全的。Xiao 等证明了 Shao的方案根本就不安全;而作者的结果表明,He 的方案在离散对数...Shao Z 与 He Wei-hua 等人中提出了所谓同时基于大整数分解和离散对数问题的数字签名方案,其意图是只要这两个数学难题不同时被攻破,则其方案就是安全的。Xiao 等证明了 Shao的方案根本就不安全;而作者的结果表明,He 的方案在离散对数问题可解时是可破的。为此,作者试图对 He 的方案进行了修改,并提出了一个带消息恢复的,同时基于两个数学难题的数字签名方案。展开更多
The simple continued fraction expansion of a single real number gives the best solution to its rational approximation problem. A multidimensional generalization of the simple continued fraction expanding procedure is ...The simple continued fraction expansion of a single real number gives the best solution to its rational approximation problem. A multidimensional generalization of the simple continued fraction expanding procedure is the Jacobi-Perron algorithm (JPA). This algorithm and展开更多
Let 3V denote the set of all possible transfer function matrices of weakly invertible linear finite automata over a given finite field F. A classification and an enumeration on the infinite set are given.
文摘Shao Z 与 He Wei-hua 等人中提出了所谓同时基于大整数分解和离散对数问题的数字签名方案,其意图是只要这两个数学难题不同时被攻破,则其方案就是安全的。Xiao 等证明了 Shao的方案根本就不安全;而作者的结果表明,He 的方案在离散对数问题可解时是可破的。为此,作者试图对 He 的方案进行了修改,并提出了一个带消息恢复的,同时基于两个数学难题的数字签名方案。
基金This work is partly supported by NSFC(No. 60173016)the National 973 Project(No.1999035804)
文摘The simple continued fraction expansion of a single real number gives the best solution to its rational approximation problem. A multidimensional generalization of the simple continued fraction expanding procedure is the Jacobi-Perron algorithm (JPA). This algorithm and
基金supported by the National Natural Science Foundation of China.
文摘Let 3V denote the set of all possible transfer function matrices of weakly invertible linear finite automata over a given finite field F. A classification and an enumeration on the infinite set are given.