期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7的草莓成熟度检测方法 被引量:2
1
作者 李红丹 帅璐宇 +1 位作者 蒲海波 《四川农业大学学报》 CSCD 北大核心 2024年第3期561-571,共11页
【目的】为实现自然环境下草莓及其成熟度的高效准确检测,设计了一款改进的YOLOv7的草莓成熟度检测模型。【方法】模型采用YOLOv7作为基础网络对草莓成熟度进行检测。首先,使用PConv卷积替换原Head部分的3×3卷积以提高检测速度。其... 【目的】为实现自然环境下草莓及其成熟度的高效准确检测,设计了一款改进的YOLOv7的草莓成熟度检测模型。【方法】模型采用YOLOv7作为基础网络对草莓成熟度进行检测。首先,使用PConv卷积替换原Head部分的3×3卷积以提高检测速度。其次,在部分特征层添加CBAM注意力机制提高模型关注重要信息的能力;再将原本上采样中简单的双线性插值算子替换为CARAFE,增加模型对草莓果实细节的感知能力。最后,利用迁移学习实现草莓数据集的训练和微调。【结果】改进前的模型mAP50为85.6%,改进后的模型mAP50为87.7%,参数量从原来的9.14×10^(6)下降为7.32×10^(6),GFLOPs下降为19.8,提高了检测速度。【结论】改进后的模型在草莓及其成熟度的检测中具有更高的检测精度和速度,可以在实际应用场景中实现草莓果实的生长监测。 展开更多
关键词 目标检测 YOLOv7 迁移学习 草莓 成熟度分类
下载PDF
深度学习在小麦害虫分类研究中的应用
2
作者 贾岚 +4 位作者 李红丹 贾心语 张博达 周飓 蒲海波 《四川农业大学学报》 CSCD 北大核心 2023年第6期1079-1089,共11页
【目的】基于深度学习的小麦害虫高效识别方法有助于害虫的及时防控,极大程度地保障粮食质量安全。【方法】首先,在IP102小麦害虫数据集的基础上,提出结合增广和Real-ESRGAN超分辨率增强的技术方案,重新制作了高质量小麦害虫数据集:IP-A... 【目的】基于深度学习的小麦害虫高效识别方法有助于害虫的及时防控,极大程度地保障粮食质量安全。【方法】首先,在IP102小麦害虫数据集的基础上,提出结合增广和Real-ESRGAN超分辨率增强的技术方案,重新制作了高质量小麦害虫数据集:IP-AugESRWheat,有效突破了小麦害虫数据集面临的类别不平衡、规模小、分辨率低的局限。其次,提出轻量高效的ECA-EffV2模型,增强模型对小麦害虫的特征提取能力。【结果】改进前的准确率为72.5%,参数量为21.46 M,改进后准确率达到94.8%,参数量降到17.76 M。【结论】提出的协同增广增强的技术策略及高效轻量的模型为小麦害虫图像识别任务提供了有效的技术方法和数据支撑,对可持续小麦生产和农业生态发展具有重要价值。 展开更多
关键词 小麦害虫识别 EfficientNetV2 Real-ESRGAN超分辨率模型 ECA注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部