期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双分支特征融合的场景文本检测方法 被引量:5
1
作者 赵鹏 +1 位作者 闫石 刘政怡 《控制与决策》 EI CSCD 北大核心 2021年第9期2179-2186,共8页
现有的基于深度学习的自然场景文本检测方法一般采用大型深度神经网络作为主干网络进行特征提取,虽然效果显著但检测模型十分庞大,检测效率较低,若直接将主干网络换成轻量型网络则不能提取出足够的特征信息,直接导致检测效果大幅降低.... 现有的基于深度学习的自然场景文本检测方法一般采用大型深度神经网络作为主干网络进行特征提取,虽然效果显著但检测模型十分庞大,检测效率较低,若直接将主干网络换成轻量型网络则不能提取出足够的特征信息,直接导致检测效果大幅降低.为了降低文本检测模型的规模以及更为高效地检测文本,提出基于双分支特征融合的场景文本检测方法,在采用相对轻量级的主干网络EfficientNet-b3的基础上,使用双路分支进行特征融合进而检测场景文本.一路分支使用特征金字塔网络,融合不同层级的特征;另一路分支使用空洞卷积空间金字塔池化结构,扩大感受野,然后融合两个分支的特征,在小幅增加计算量的同时获取更多的特征,弥补小型网络提取特征不足的问题.在3个公开数据集上的实验结果显示,所提出方法在保持较高检测水平的情况下,可以大幅度降低模型的参数量,大幅度提升检测速度. 展开更多
关键词 场景文本检测 深度学习 特征金字塔 特征融合 轻量级网络 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部