绿色作物的识别是农业机械视觉系统的重要研究内容之一,该文采用RGB颜色系统,基于统计分析提出了一种绿色作物图像分割方法。从简单物体光照颜色模型方面,分析了RGB颜色空间中作物绿色"恒量"(Gvalue>Rvalue and Gvalue>...绿色作物的识别是农业机械视觉系统的重要研究内容之一,该文采用RGB颜色系统,基于统计分析提出了一种绿色作物图像分割方法。从简单物体光照颜色模型方面,分析了RGB颜色空间中作物绿色"恒量"(Gvalue>Rvalue and Gvalue>Bvalue)的存在性,构建了作物图像分割相对错误率评估模型。并与传统颜色索引方法Excess Green(ExG)+auto-threshold进行了对比分析。试验结果表明,在正常光照条件下:1)采用的算法对田间不同作物-土壤组图像分割的相对错误率均有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能保留油菜、大豆和甘蔗的形态学特征;2)采用的算法、光照变化以及算法与光照变化的交互作用均对室外美人蕉图像分割的相对错误率有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能去除背景噪声。单因子方差分析进一步表明,光照变化对采用ExG+auto-threshold算法分割图像的阈值有显著影响。该文提出的RGB算法相对传统的ExG+auto-threshold绿色索引,对于早期生长的绿色作物是一种有效、简单的图像分割方法,对作物-土壤、光照变化不敏感。展开更多
本报告介绍了由中央电教馆(主持人王珠珠)主持的"基于现代信息技术环境下的学与教的理论与实践"专项课题"基于网络的校际协作学习研究"的开展经纬与部分研究结论。本项目是我国第一个在教育部直接领导下,开展的全...本报告介绍了由中央电教馆(主持人王珠珠)主持的"基于现代信息技术环境下的学与教的理论与实践"专项课题"基于网络的校际协作学习研究"的开展经纬与部分研究结论。本项目是我国第一个在教育部直接领导下,开展的全国性中小学远程合作学习项目,项目简称"ISNET PROJECT(Integrative Study Network Project)"。展开更多
文摘绿色作物的识别是农业机械视觉系统的重要研究内容之一,该文采用RGB颜色系统,基于统计分析提出了一种绿色作物图像分割方法。从简单物体光照颜色模型方面,分析了RGB颜色空间中作物绿色"恒量"(Gvalue>Rvalue and Gvalue>Bvalue)的存在性,构建了作物图像分割相对错误率评估模型。并与传统颜色索引方法Excess Green(ExG)+auto-threshold进行了对比分析。试验结果表明,在正常光照条件下:1)采用的算法对田间不同作物-土壤组图像分割的相对错误率均有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能保留油菜、大豆和甘蔗的形态学特征;2)采用的算法、光照变化以及算法与光照变化的交互作用均对室外美人蕉图像分割的相对错误率有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能去除背景噪声。单因子方差分析进一步表明,光照变化对采用ExG+auto-threshold算法分割图像的阈值有显著影响。该文提出的RGB算法相对传统的ExG+auto-threshold绿色索引,对于早期生长的绿色作物是一种有效、简单的图像分割方法,对作物-土壤、光照变化不敏感。
文摘本报告介绍了由中央电教馆(主持人王珠珠)主持的"基于现代信息技术环境下的学与教的理论与实践"专项课题"基于网络的校际协作学习研究"的开展经纬与部分研究结论。本项目是我国第一个在教育部直接领导下,开展的全国性中小学远程合作学习项目,项目简称"ISNET PROJECT(Integrative Study Network Project)"。