期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AlexNet网络的交通标志识别方法 被引量:6
1
作者 王丽华 《无线电工程》 北大核心 2022年第3期470-475,共6页
针对交通标志在城市交通中易受恶劣天气、交通拥堵等影响而导致识别率低的问题,提出了一种在Alex模型基础上改进的交通标志识别方法,引入了批量归一化(Batch Normalization,BN)方法取代原有的局部响应归一化(Local Response Normalizati... 针对交通标志在城市交通中易受恶劣天气、交通拥堵等影响而导致识别率低的问题,提出了一种在Alex模型基础上改进的交通标志识别方法,引入了批量归一化(Batch Normalization,BN)方法取代原有的局部响应归一化(Local Response Normalization,LRN)法,并加入全局平均池化层(Global Average Pooling Layer,GAP)取代原有的全连接层。其中BN法将每一层输出数据归一化为均值为0、标准差为1,使得结构传输更为顺畅;GAP层的引入大大减少了网络参数量。使用GTSRB数据集进行训练并测试,结果表明改进后的网络模型分类精度有了很大的提高,达到了93.2%,具备一定的实用价值。 展开更多
关键词 卷积神经网络 交通标识 批归一化处理 全局平均池化层
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部