期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ni(OH)_2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors 被引量:1
1
作者 柯曦 +6 位作者 程乙峰 梁耀华 谭植元 刘军 刘丽英 施志聪 郭再萍 《Science China Materials》 SCIE EI CSCD 2018年第3期353-362,共10页
The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydrox... The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the develop- ment of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nano- porous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-di- mensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3,380 F g-1 at a current density of 2 A g-1. Even when the current density was increased to 50 A g-1, it still retained a high capacitance of 1,927 F g-1. The promising performance of the Ni(OH)2@NPG/Ni foam elec- trode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This in- spiring electrochemical performance would make the as-de- signed electrode material become one of the most promising candidates for future electrochemical energy storage systems. 展开更多
关键词 SUPERCAPACITOR nanoporous gold nickel hydroxide electrode material hierarchical porosity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部