对Ti650合金电子束焊接样品进行了不同制度的热处理,研究了焊后热处理工艺对合金焊接样品的组织和力学性能影响。结果表明,Ti650合金真空电子束焊缝焊后主要以亚稳马氏体α′相为主。经700℃/2 h AC退火后,焊缝中马氏体α′相发生近平...对Ti650合金电子束焊接样品进行了不同制度的热处理,研究了焊后热处理工艺对合金焊接样品的组织和力学性能影响。结果表明,Ti650合金真空电子束焊缝焊后主要以亚稳马氏体α′相为主。经700℃/2 h AC退火后,焊缝中马氏体α′相发生近平衡相变α′→α,同时焊缝中析出大量次生短针状α相。经1010℃/1.5 h WC+650℃/2 h AC处理后,α相发生了明显粗化和等轴化。次生析出的短针状α与原始粗化的α片层相结合有效地提高焊缝强度,阻碍了裂纹的扩展,使焊接接头在该条件下具有较好的强度和塑性。经固溶时效后再经700℃/2 h AC处理,晶界处逐渐析出等轴α,弱化了晶界强度,引起其塑性的降低。综合分析焊缝区的组织和性能,Ti650合金焊接样品采用1010℃/1.5 h WC+650℃/2 h AC进行焊后热处理,焊缝和基体的性能能够获得较好匹配。展开更多
文摘对Ti650合金电子束焊接样品进行了不同制度的热处理,研究了焊后热处理工艺对合金焊接样品的组织和力学性能影响。结果表明,Ti650合金真空电子束焊缝焊后主要以亚稳马氏体α′相为主。经700℃/2 h AC退火后,焊缝中马氏体α′相发生近平衡相变α′→α,同时焊缝中析出大量次生短针状α相。经1010℃/1.5 h WC+650℃/2 h AC处理后,α相发生了明显粗化和等轴化。次生析出的短针状α与原始粗化的α片层相结合有效地提高焊缝强度,阻碍了裂纹的扩展,使焊接接头在该条件下具有较好的强度和塑性。经固溶时效后再经700℃/2 h AC处理,晶界处逐渐析出等轴α,弱化了晶界强度,引起其塑性的降低。综合分析焊缝区的组织和性能,Ti650合金焊接样品采用1010℃/1.5 h WC+650℃/2 h AC进行焊后热处理,焊缝和基体的性能能够获得较好匹配。