在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen P...在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen Plus V10.0对工艺流程进行模拟研究。以塔釜产品纯度为约束变量,高压塔塔釜能耗最低为优化目标,分别对理论板数、进料位置、回流比等参数进行优化,优化后的两塔最优工艺参数如下:常压塔理论板数31,回流比2.5,进料位置第9块塔板,循环物料进料位置第14块塔板;高压塔操作压力500 kPa,理论板数21,进料位置第13块塔板,回流比3.3。分离效果可达到甲醇质量分数99.95%,丙酸甲酯质量分数99.94%。与传统变压精馏相比,本文的耦合变压精馏可节省能耗48.8%。展开更多
文摘在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen Plus V10.0对工艺流程进行模拟研究。以塔釜产品纯度为约束变量,高压塔塔釜能耗最低为优化目标,分别对理论板数、进料位置、回流比等参数进行优化,优化后的两塔最优工艺参数如下:常压塔理论板数31,回流比2.5,进料位置第9块塔板,循环物料进料位置第14块塔板;高压塔操作压力500 kPa,理论板数21,进料位置第13块塔板,回流比3.3。分离效果可达到甲醇质量分数99.95%,丙酸甲酯质量分数99.94%。与传统变压精馏相比,本文的耦合变压精馏可节省能耗48.8%。