语义分割网络被广泛应用在高分辨率遥感影像建筑物提取领域。但是语义分割网络中的连续下采样会损失特征中的细节信息,导致提取结果边缘模糊,不同深度特征的不充分利用导致传统网络难以识别尺度差异大的建筑物。针对以上问题,文章基于...语义分割网络被广泛应用在高分辨率遥感影像建筑物提取领域。但是语义分割网络中的连续下采样会损失特征中的细节信息,导致提取结果边缘模糊,不同深度特征的不充分利用导致传统网络难以识别尺度差异大的建筑物。针对以上问题,文章基于双线性插值上采样和多尺度特征组合提出一种多尺度建筑物提取网络(Multi-scale building extraction network,Msb-Net),该网络包括编码器、解码器以及多尺度特征组合三部分。首先,编码器基于双线性插值上采样丰富图像的细节信息,再通过特征编码提取深层抽象特征;其次,解码器恢复特征空间分辨率,获得深度不同的解码特征;最后,基于多尺度特征组合结构对不同深度的解码特征进行组合,获得最佳的检测结果。文章在马萨诸塞州数据集和武汉大学数据集上进行验证,结果表明,Msb-Net具有更高的识别精度,在两个数据集上交并比指标分别提高了1.71%和1.88%。通过结果对比可以得出结论:相比于传统语义分割网络,Msb-Net可以通过多感受野特征组合的方法更加准确地识别遥感影像中不同尺度的建筑物。展开更多
针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一...针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一部分引力变为斥力,从而增加种群的多样性,有利于寻找全局最优。对10个基准测试函数进行优化的结果表明:该算法的收敛结果明显优于遗传算法、粒子群算法及原始的引力搜索算法。展开更多
文摘语义分割网络被广泛应用在高分辨率遥感影像建筑物提取领域。但是语义分割网络中的连续下采样会损失特征中的细节信息,导致提取结果边缘模糊,不同深度特征的不充分利用导致传统网络难以识别尺度差异大的建筑物。针对以上问题,文章基于双线性插值上采样和多尺度特征组合提出一种多尺度建筑物提取网络(Multi-scale building extraction network,Msb-Net),该网络包括编码器、解码器以及多尺度特征组合三部分。首先,编码器基于双线性插值上采样丰富图像的细节信息,再通过特征编码提取深层抽象特征;其次,解码器恢复特征空间分辨率,获得深度不同的解码特征;最后,基于多尺度特征组合结构对不同深度的解码特征进行组合,获得最佳的检测结果。文章在马萨诸塞州数据集和武汉大学数据集上进行验证,结果表明,Msb-Net具有更高的识别精度,在两个数据集上交并比指标分别提高了1.71%和1.88%。通过结果对比可以得出结论:相比于传统语义分割网络,Msb-Net可以通过多感受野特征组合的方法更加准确地识别遥感影像中不同尺度的建筑物。
文摘针对引力搜索算法(Gravitational Search Algorithm,GSA)收敛速度较快、易陷入局部最优的缺点,提出一种加入斥力的引力搜索算法RFGSA(Repulsion Force based Gravitational Search Algorithm)。该算法在引力搜索算法中引入斥力,即将一部分引力变为斥力,从而增加种群的多样性,有利于寻找全局最优。对10个基准测试函数进行优化的结果表明:该算法的收敛结果明显优于遗传算法、粒子群算法及原始的引力搜索算法。