Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey ...Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey dynamics affected by both delays and the Allee effect. We analyze the consequences of delays in different feedback mechanisms. The existence of a Hopf bifurcation is studied, and we calculate the value of the delay that leads to the Hopf bifurcation. Furthermore, applying the normal form theory and a center manifold theorem, we consider the direction and stability of the Hopf bifurcation. Finally, we present numerical experiments that validate our theoretical analysis. Interestingly, depending on the chosen delay mechanism, we find that delays are not necessarily destabilizing. The Allee effect generally increases the stability of the equilibrium, and when the Allee effect involves a delay term, the stabilization effect is more pronounced.展开更多
基金supported by the Gansu Science and Technology Fund (20JR5RA512)the Research Fund for Humanities and Social Sciences of the Ministry of Education (20XJAZH006)+2 种基金the Fundamental Research Funds for the Central Universities (31920220066)the Gansu Provincial Education Department:Outstanding Postgraduate Innovation Star Project (2023CXZX-196)the Leading Talents Project of State Ethnic Affairs Commission of China and the Innovation Team of Intelligent Computing and Dynamical System Analysis and Application of Northwest Minzu University。
文摘Regarding delay-induced predator-prey models, much research has been done on delayed destabilization, but whether delays are stabilizing or destabilizing is a subtle issue. In this study, we investigate predator-prey dynamics affected by both delays and the Allee effect. We analyze the consequences of delays in different feedback mechanisms. The existence of a Hopf bifurcation is studied, and we calculate the value of the delay that leads to the Hopf bifurcation. Furthermore, applying the normal form theory and a center manifold theorem, we consider the direction and stability of the Hopf bifurcation. Finally, we present numerical experiments that validate our theoretical analysis. Interestingly, depending on the chosen delay mechanism, we find that delays are not necessarily destabilizing. The Allee effect generally increases the stability of the equilibrium, and when the Allee effect involves a delay term, the stabilization effect is more pronounced.