Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O ...Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O electrocatalysis.In this method,NO_(x)is provided by the gliding arc discharge and then electrolyzed by Cu/Cu_(2)O after alkaline absorption.The electrical characteristics,the optical characteristics and the NO_(x)production are investigated in discharges at different input voltage and the gas flow.The dependence of ammonia production through Cu/Cu_(2)O electrocatalysis on pH value and reduction potential are determined by colorimetric method.In our study,two discharge modes are observed.At high input voltage and low gas flow,the discharge is operated with a stable plasma channel which is called the steady arc gliding discharge mode(A-G mode).As lowering input voltage and raising gas flow,the plasma channel is destroyed and high frequency breakdown occurs instead,which is known as the breakdown gliding discharge mode(B-G mode).The optimal NO_(x)production of 7.34 mmol h^(-1)is obtained in the transition stage of the two discharge modes.The ammonia yield reaches0.402 mmol h^(-1)cm^(-2)at pH value of 12.7 and reduction potential of-1.0 V versus reversible hydrogen electrode(RHE).展开更多
This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,att...This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.展开更多
In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag ...In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag NP)core,where the core is used to bring antibacterial activity,and the shell is utilized to suppress the potential toxicity of Ag NPs.The surface morphology and the elements of the samples are analyzed by scanning electron microscopy(SEM),energy dispersive x-ray and x-ray photoelectron spectroscopy(XPS).The SEM results show that the skin of the cotton fibers will fall off gradually after APP treatment over 3 min,and the XPS results show that the Ag content will rise to 1.6%after APP deposition for 10 min.Furthermore,the antimicrobial activity tests show that the reduction rates of Escherichia coli and Staphylococcus aureus can achieve 100%when the sample is treated for 10 min,which exhibits excellent antibacterial activity.In addition,the UV absorption properties of the cotton will also be correspondingly improved,which brings a broader application prospect for antibacterial cotton.展开更多
文摘Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O electrocatalysis.In this method,NO_(x)is provided by the gliding arc discharge and then electrolyzed by Cu/Cu_(2)O after alkaline absorption.The electrical characteristics,the optical characteristics and the NO_(x)production are investigated in discharges at different input voltage and the gas flow.The dependence of ammonia production through Cu/Cu_(2)O electrocatalysis on pH value and reduction potential are determined by colorimetric method.In our study,two discharge modes are observed.At high input voltage and low gas flow,the discharge is operated with a stable plasma channel which is called the steady arc gliding discharge mode(A-G mode).As lowering input voltage and raising gas flow,the plasma channel is destroyed and high frequency breakdown occurs instead,which is known as the breakdown gliding discharge mode(B-G mode).The optimal NO_(x)production of 7.34 mmol h^(-1)is obtained in the transition stage of the two discharge modes.The ammonia yield reaches0.402 mmol h^(-1)cm^(-2)at pH value of 12.7 and reduction potential of-1.0 V versus reversible hydrogen electrode(RHE).
基金financial supports by National Natural Science Foundation of China(Nos.11975163 and 12175160)Nantong Basic Science Research-General Program(No.JC22022034)Natural Science Research Fund of Jiangsu College of Engineering and Technology(No.GYKY/2023/2)。
文摘This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.
基金supported by National Natural Science Foundation of China(Nos.11975163 and 12175160)together with a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag NP)core,where the core is used to bring antibacterial activity,and the shell is utilized to suppress the potential toxicity of Ag NPs.The surface morphology and the elements of the samples are analyzed by scanning electron microscopy(SEM),energy dispersive x-ray and x-ray photoelectron spectroscopy(XPS).The SEM results show that the skin of the cotton fibers will fall off gradually after APP treatment over 3 min,and the XPS results show that the Ag content will rise to 1.6%after APP deposition for 10 min.Furthermore,the antimicrobial activity tests show that the reduction rates of Escherichia coli and Staphylococcus aureus can achieve 100%when the sample is treated for 10 min,which exhibits excellent antibacterial activity.In addition,the UV absorption properties of the cotton will also be correspondingly improved,which brings a broader application prospect for antibacterial cotton.