In this paper, we investigate the problem of determining regions in 3D scene visible to some given viewpoints when obstacles are present in the scene. We assume that the obstacles are composed of some opaque objects w...In this paper, we investigate the problem of determining regions in 3D scene visible to some given viewpoints when obstacles are present in the scene. We assume that the obstacles are composed of some opaque objects with closed surfaces. The problem is formulated in an implicit framework where the obstacles are represented by a level set function. The visible and invisible regions of the given viewpoints are determined through an efficient implicit ray tracing technique. As an extension of our approach, we apply the multiview visibility estimation to an image-based modeling technique. The unknown scene geometry and multiview visibility information are incorporated into a variational energy functional. By minimizing the energy functional, the true scene geometry as well as the accurate visibility information of the multiple views can be recovered from a number of scene images. This makes it feasible to handle the visibility problem of multiple views by our approach when the true scene geometry is unknown.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.90920009the National High-Tech Research and Development 863 Program of China under Grant No.2009AA01Z323
文摘In this paper, we investigate the problem of determining regions in 3D scene visible to some given viewpoints when obstacles are present in the scene. We assume that the obstacles are composed of some opaque objects with closed surfaces. The problem is formulated in an implicit framework where the obstacles are represented by a level set function. The visible and invisible regions of the given viewpoints are determined through an efficient implicit ray tracing technique. As an extension of our approach, we apply the multiview visibility estimation to an image-based modeling technique. The unknown scene geometry and multiview visibility information are incorporated into a variational energy functional. By minimizing the energy functional, the true scene geometry as well as the accurate visibility information of the multiple views can be recovered from a number of scene images. This makes it feasible to handle the visibility problem of multiple views by our approach when the true scene geometry is unknown.