期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多模态数据全信息的概率主成分分析故障检测研究
被引量:
16
1
作者
李元
张
昊
展
唐晓初
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第2期75-85,共11页
针对工业过程复杂的数据分布特性,本文提出了一种基于局部近邻标准化(LNS)的概率主成分分析(PPCA)故障检测方法(LNSPPCA)来解决由于过程数据的多模态特性和不确定性所引起的故障检测效果不理想问题。首先,通过LNS解决数据多模态问题,使...
针对工业过程复杂的数据分布特性,本文提出了一种基于局部近邻标准化(LNS)的概率主成分分析(PPCA)故障检测方法(LNSPPCA)来解决由于过程数据的多模态特性和不确定性所引起的故障检测效果不理想问题。首先,通过LNS解决数据多模态问题,使标准化后数据尽可能的服从单一高斯分布,然后,使用PPCA方法从概率的角度对数据进行分析,能够考虑到数据的随机性,从而更真实的描述数据,提取更加全面有价值的信息,有效的在复杂的数据分布过程中对故障进行检测。因此,LNSPPCA方法可以有效提高多模态过程复杂数据分布的工业过程故障检测能力。利用数值例子和TE过程进行应用实验,并将测试结果与主成分分析法(PCA)、PPCA方法进行对比,验证了LNSPPCA方法的有效性。
展开更多
关键词
多模态
全信息
局部近邻标准化
概率主成分分析
故障检测
下载PDF
职称材料
题名
基于多模态数据全信息的概率主成分分析故障检测研究
被引量:
16
1
作者
李元
张
昊
展
唐晓初
机构
沈阳化工大学信息工程学院
沈阳航空航天大学自动化学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第2期75-85,共11页
基金
国家自然科学基金(61673279)资助项目
文摘
针对工业过程复杂的数据分布特性,本文提出了一种基于局部近邻标准化(LNS)的概率主成分分析(PPCA)故障检测方法(LNSPPCA)来解决由于过程数据的多模态特性和不确定性所引起的故障检测效果不理想问题。首先,通过LNS解决数据多模态问题,使标准化后数据尽可能的服从单一高斯分布,然后,使用PPCA方法从概率的角度对数据进行分析,能够考虑到数据的随机性,从而更真实的描述数据,提取更加全面有价值的信息,有效的在复杂的数据分布过程中对故障进行检测。因此,LNSPPCA方法可以有效提高多模态过程复杂数据分布的工业过程故障检测能力。利用数值例子和TE过程进行应用实验,并将测试结果与主成分分析法(PCA)、PPCA方法进行对比,验证了LNSPPCA方法的有效性。
关键词
多模态
全信息
局部近邻标准化
概率主成分分析
故障检测
Keywords
multimodal
full information
local neighborhood standardization
probabilistic principal component analysis
fault detection
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
TH165.3 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多模态数据全信息的概率主成分分析故障检测研究
李元
张
昊
展
唐晓初
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部