期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于CA-ResNet网络与nadam优化的入侵检测算法 被引量:8
1
作者 张文 魏延 +3 位作者 李媛媛 蒋俊蕊 张昆 张杨 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2021年第4期97-106,共10页
【目的】针对深度学习模型在网络入侵检测中进行参数训练时因梯度消失而导致深度学习模型过拟合在测试集上准确率下降的问题。提出一种结合LeakyRelu激活函数与ResNet的网络入侵检测算法,即CA-ResNet,并采用nadam优化器对模型进行优化... 【目的】针对深度学习模型在网络入侵检测中进行参数训练时因梯度消失而导致深度学习模型过拟合在测试集上准确率下降的问题。提出一种结合LeakyRelu激活函数与ResNet的网络入侵检测算法,即CA-ResNet,并采用nadam优化器对模型进行优化。【方法】该模型在DNN的基础上增加了网络的层次,结合了ResNet和LeakyRelu激活函数。【结果】解决了模型训练时梯度消失的问题,保证了该模型在测试数据集上的表现,使得训练的模型的泛化能力更强,同时通过增加网络的单层维度和总层次的深度,提高了网络的特征提取能力和对尺度的适应性。【结论】使用KDD Cup99数据中的Corrected数据集对算法进行验证。实验表明,该算法与CNN和CNN-BiLSTM算法相比具有更高的准确率和F1-score,准确率能够达到95.0%,F1-score能够达到97.5,时间复杂度为线性时间复杂度。 展开更多
关键词 网络安全 深度学习 入侵检测 ResNet残差网络 协同激活函数 CA-ResNet nadam优化器
原文传递
基于人体时空骨架特征的图卷积行为识别算法 被引量:4
2
作者 蒋俊蕊 魏延 +3 位作者 王晶仪 张文 张昆 李媛媛 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期124-133,共10页
【目的】为了充分利用动态的人体骨架特征,提高行为识别精度,提出一种基于人体时空骨架特征的图卷积行为识别算法。【方法】首先在空间上确定主关节点,再融合各关节点与主关节点之间的向量和关节点间的骨骼长度,获取瞬时状态下关节点的... 【目的】为了充分利用动态的人体骨架特征,提高行为识别精度,提出一种基于人体时空骨架特征的图卷积行为识别算法。【方法】首先在空间上确定主关节点,再融合各关节点与主关节点之间的向量和关节点间的骨骼长度,获取瞬时状态下关节点的相对位置关系;然后计算相邻两帧之间由相同关节点构成的时序动作信息来描述运动状态;最后,将时空信息融合到时空图卷积网络中,进行端到端训练。【结果】与时空图卷积网络识别算法相比,在400分类Kinetics行为识别数据集上的Top-1和Top-5指标分别提升了1.78%和1.77%,在NTU RGB+D数据集的两个基准上的Top-1分别提升4.13%和2.61%。【结论】提出的基于人体时空骨架特征的图卷积行为识别算法是有效实用的。 展开更多
关键词 人体骨架特征 图卷积网络 行为识别 深度学习
原文传递
FPN-MSTCN模型在学生专注度评价中的应用
3
作者 张文 魏延 +1 位作者 张昆 蒋俊蕊 《信息技术》 2023年第12期15-21,共7页
为了提高智慧教育场景下的学生专注度评价准确率,针对小样本类别难以识别的问题,提出一种FPN-MSTCN模型进行专注度评价,该模型通过改进的FPN网络对单帧人脸进行多尺度的特征提取,解决了在图像中人脸特征无法完整提取的问题。然后,通过... 为了提高智慧教育场景下的学生专注度评价准确率,针对小样本类别难以识别的问题,提出一种FPN-MSTCN模型进行专注度评价,该模型通过改进的FPN网络对单帧人脸进行多尺度的特征提取,解决了在图像中人脸特征无法完整提取的问题。然后,通过融合了SimGNN模块的MSTCN网络对图像序列进行分类,并通过SimGNN模块解决了图像标签与视频标签不一致的问题。采用DAiSEE和EmotiW数据集进行实验。由于DAiSEE和EmotiW数据集的分布严重不均衡,使用代价敏感损失函数作为该模型的损失函数,解决了过拟合问题,测试集准确率分别提高了3.8%和3.1%。 展开更多
关键词 深度学习 特征图金字塔网络 多阶时序卷积网络 智慧教育 学生专注度
下载PDF
基于K-means的邻域结合随机吸引的萤火虫算法 被引量:3
4
作者 李媛媛 魏延 +2 位作者 张文 王晶仪 蒋俊蕊 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2021年第6期114-121,共8页
【目的】为解决传统萤火虫算法收敛速度慢,特别是对于复杂的优化问题,容易陷入局部最优,从而导致收敛精度低的问题,提出了基于K-means的邻域结合随机吸引的萤火虫算法。【方法】先将初始萤火虫种群进行K-means聚类,用聚类中心的萤火虫... 【目的】为解决传统萤火虫算法收敛速度慢,特别是对于复杂的优化问题,容易陷入局部最优,从而导致收敛精度低的问题,提出了基于K-means的邻域结合随机吸引的萤火虫算法。【方法】先将初始萤火虫种群进行K-means聚类,用聚类中心的萤火虫种群为寻优萤火虫,然后以提出的邻域与随机相结合的吸引模型进行寻优,在寻优过程中,还引入自适应步长策略。【结果】在减少算法复杂度的同时保证了算法的全局搜索能力,不仅提高了算法跳出局部最优的能力,还能够让算法在快速收敛的同时提升结果的精度。【结论】实验结果表明,提出的基于K-means的邻域结合随机吸引的萤火虫算法,无论是寻优结果的精度和稳定性,还是寻优速度上都有更好的效果。 展开更多
关键词 萤火虫算法 K-MEANS算法 邻域结构 全局寻优
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部