Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/subs...Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.展开更多
A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was ...A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).展开更多
基金Project supported by Zhejiang Provincial Natural Science Foundation of China (203147)the National Natural Science Foundation of China (20473075)
文摘Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.
基金Project supported by Zhejiang Provincial Nature Science Foundation of China (203147)the National Natural ScienceFoundation of China (20473075)
文摘A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).